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Abstract: This paper addresses the problem of 
locating a finite number of sensors to detect an event 
occurring along a piecewise linear curve.  The 
objective is to minimize the maximum probability of 
non-detection.  This sensor location problem has 
several applications, including the placement of 
sentries along a border to detect enemy penetration 
and the location of cell phone towers along a highway.  
The problem is a difficult nonlinear nonconvex 
programming problem even in the case of two sensors.  
A fast heuristic based on Voronoi diagrams is 
developed in this paper.  The algorithm can quickly 
generate high-quality solutions.  Computational 
experience is provided. 
 
1. Introduction: Suppose that an event occurs along a 

piecewise linear curve in 2
� .  The problem is to 

position a finite number of identical sensors so that the 
probability of detecting such an event is maximized, 
assuming that the effectiveness of each sensor 
decreases with its distance from the event.  The 
solution to such a problem has numerous applications; 
for example, the placement of sensors along a border 
to detect enemy penetration, or the location of sensors 
to monitor events along a roadway.  Another 
application would be to provide uninterrupted cell 
phone service along a major highway. 

The above applications require locating a network of 
sensors where it is crucial that an event does not go 
undetected because of its location.  The problem can 
be considered a facility location problem with an 
objective of providing equitable service to the 
customers, where the facilities being located are the 

sensors, and the customers are the event (source) 
locations.  It can be classified as a continuous 
multifacility problem; however, in this problem, the 
objective terms are not simply weighted distances as in 
most location problems, but a propagation function of 
distance converted into probabilities of detection. 

A planar version of this problem has been addressed 
by Drezner and Wesolowsky [1997] and Cavalier, et 
al. [2007], who demonstrated that a suitable choice of 
objective function is one that minimizes the maximum 
probability of nondetection.  That is, the poorest 
response is made to be as good as possible.  Minimax 
location models have also been used in other 
applications such as locating fire stations, hospitals 
and ambulance bases [Elzinga and Hearn 1972, 
Plastria 1995]. 

It is assumed that events, within the scope of this 
research, produce a ‘signal’ that interacts with the 
environment through which they propagate and the 
signal intensity decreases as a function of the distance 
between the sensor and the event.  As mention in 
Drezner and Wesolowsky [1997] and Cavalier, et al. 
[2007], these detection probability functions (dpf) can 
be modeled in a variety of ways where ( )dπ  

represents the probability of detecting an event at a 
distance d.  Some of the most common dpfs are (1)  

power decay, ( )  
n

d
d

απ
µ

=
+

 , 0 α µ< ≤ , 0n > ; 

(2) exponential decay, ( )  
ndd Ae βπ −= , 0 1A< ≤ , 

, 0nβ > ; and (3) gravity decay, /( )  1
nk dd eπ −= − , 
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, 0k n > .  By changing the dpf parameters, families of 
detection probability functions can be generated.  In 
this paper, computational experience is generated 
using gravity decay, although the algorithms 
developed in this paper are not tailored for a specific 
dpf, but address the problem in a more general sense. 

The following assumptions are made for the piecewise 
linear sensor location problem (PWL-SELP). 

1. The m sensors to be located are identical. 
2. The region to be monitored is piecewise 

linear curve PWL in the plane 2( )� . 

3. The event occurs with equal probability 
anywhere along PWL.  

4. There are no existing sensors. 
5. The detection probability function is only 

dependent on the distance from the event to 
the ith sensor. 

6. All sensors are in perfect working order with 
no internal or external influences affecting 
performance.  This idealized sensor has 
perfect discrimination and no false detections.  
That is, it will signal a detection only when 
the event is present. 

7. The effectiveness of a sensor is independent 
of its location. 

8. There are no constraints on the location of the 
sensors. 

9. The probability of detection is a non-
increasing, real-valued, continuous function 
of distance from the event. 

10. The sensors operate independently of each 
other. 

 

It is understood that these simplifications may not be 
valid in some actual cases.  However, achieving 
solutions to simpler models can provide the 
foundation, insight and understanding to develop 
methods for more complex models.  Because of the 
nonconvex nature of the objective function, verifying 
that the solution obtained is a global optimum can be 
quite difficult even for small problems. 

Drezner and Wesolowsky [1997] addressed the 
problem of locating p-identical signal detectors on a 
unit line and a unit square.  For the unit line problem, 
they used mathematical programming and a special 
algorithm designed to achieve the necessary conditions 
for optimality.  For the square planar problem, four 
procedures were considered: a univariate search, a 
mathematical programming formulation, simulated 
annealing, and a Demjanov-type method.  The planar 

problem was formulated using a finite number of 
possible event locations to produce a uniform grid 
covering the square region.  This provides an 
approximate solution to the continuous problem.   

The Demjanov-type algorithm, according to Drezner 
and Wesolowsky, provided the best solutions for the 
test problems in a ‘reasonable’ run time.  The current 
station locations are improved by moving them in the 
direction of steepest descent.  The direction is found 
using a method proposed by Demjanov [1968].  The 
objective function is then optimized along this 
direction using a one-dimensional optimization 
procedure. 

Cavalier, et al. [2007] address the minimax sensor 
location problem when the underlying domain is an 
arbitrary convex polygon in the plane.  They 
developed an algorithm called Toward the Largest 
Peak (TLP) that relies on Voronoi diagrams to 
approximate the probability of non-detection and 
generate search directions.  A Voronoi diagram can be 
described as follows [Preparata and Shamos, 1985]: 
Let R be a set containing a finite number of points 
(e.g. sensors) in the plane.  For each point i R∈p , the 

set of locations in the plane closer to ip  than any other 

point in S is an element of the Voronoi polygon of ip , 
denoted ( )V i .  The Voronoi diagram associated with 

R is V  = { }(1),..., ( )V V n , where n is the number of 

points contained in R.  Several algorithms exist for 
computing Voronoi diagrams. Okabe et al. [1992] give 
a detailed description of incremental, divide-and-
conquer, and plane-sweep methods.  Through 
computational testing,  Cavalier, et al. [2007] 
demonstrated that the TLP algorithm was quite fast 
and typically generated solutions that were superior to 
MATLAB’s Fminimax, an algorithm specifically 
designed to solve minimax-type problems. 

From an application standpoint, research has been 
done in the field of wireless communication, 
specifically with respect to the base station location 
problem (BSTLP).  With the increased demand for 
mobile communication services and deregulation acts 
(Tutschku 1998), the competition between service 
providers and potential revenues has driven the 
research for finding an optimal deployment of base 
stations which is both cost effective and provides the 
maximum possible coverage.  The BSTLP involves 
locating multiple base stations within a region while 
providing an acceptable quality of service to mobiles 
(Howitt and Ham 1999).  The BSTLP is different from 
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the sensor location problem in that the traffic and 
capacity on each base station is an important 
consideration. 

Although there are similarities between the p-center 
problem (e.g., Love et al. [1973], Elzinga et al. [1976], 
Suzuki and Drezner [1996]) and the sensor location 
problem, there are significant differences.   The p-
center minimizes the maximum distance between 
facilities and demand points.  It is an allocation 
problem, and thus each demand point is assigned to 
and interacts with its closest facility.  On the other 
hand, the objective function in the sensor location 
problem involves the product of probabilities, making 
each event point interact with all sensors.  It is easy to 
see that an optimal set of facility locations for the p-
center problem will, in general, be a very poor solution 
to the sensor location problem. 

Prior attempts at solving signal detection problems 
have focused on problems where random events 
occurred in a continuous planar region.  These 
techniques are not directly applicable when the 
underlying domain is a piecewise linear curve.  It is 
also easy to show that attempting to derive an 
approximate solution by utilizing the convex hull of 
the breakpoints of the piecewise linear function results 
in very poor solution quality.   In the spirit of Cavalier, 
et al. [2007], this paper attempts to exploit the 
geometry of the problem rather than consider the 
specific form of the objective function.  This is done 
by deriving local information from Voronoi polygons 
and adjusting sensor positions by a technique called 
toward the largest peak (TLP).  The remainder of this 
paper is organized as follows:  The succeeding section 
provides a mathematical formulation of the problem.  
This is followed by a detailed description of 
differential evolution, the TLP algorithm, 
computational experience, and concluding remarks. 

 
2. PWL-SELP Mathematical Model: Let PWL 

represent a piecewise linear curve in 2�  and let 
{ : 1,.., }iT i b= =t  represent the set of breakpoints 

associated with PWL.  Suppose that an event occurs at 
location ( , )x y PWL= ∈z  and that the placement of m 

sensors (detectors) must be decided to monitor PWL.  
These sensors may or may not be located directly on 
PWL.   For convenience, an event occurring at location 
z will be referred to simply as event z.  The probability 
of detecting the event with the ith sensor (located at 

( , )i i ix y=x ) is ( )idπ  where 

2 2( , ) ( ) ( )i i i id d x x y y= = − + −z x  represents the 

Euclidean distance between sensor i and event z.  The 
poorest response for the PWL-SELP will occur where 
the probability of non-detection is largest.  Under the 
minimax criterion the largest probability of non-
detection for PWL should be made as small as 
possible.  Let ( )1 2, , , m=X x x x…  denote the vector of 

all sensor locations.  Then if the m sensors operate 
independently of each other, the probability that an 
event z is not detected for a fixed set X of sensors is 
the product that each sensor individually does not 

detect event z and is given by ( )( )
1

1 ,
m

i
i

dπ
=

 − ∏ z x .  

As in Cavalier, et al. [2007], events are assumed to 
occur with equal probability anywhere along PWL.  
Thus, the problem of minimizing the maximum 
probability of non-detection can be stated as follows: 

(PWL-SELP)  

( )

( )( ) 

1

1

1 2
, ,

, , 1

min , , , = 

min max 1 ,

m

m

m

m

i i
i

d

ψ

π
=

   −  
  
∏

x x

x x z

x x x

z x

…

…

…

 

As mentioned earlier, (1) is a difficult nonlinear, 
nonconvex programming problem when 1m > .  A 
solution algorithm for (1) can be visualized as an 
iterative two-phase process.  For a fixed set of sensors 
locations, the value of ψ  is found (or approximated).  
In general, the calculation of the value of ψ  is 
nontrivial and is often approached through 
discretization of the domain.  The sensors are then 
moved and ψ  is recalculated.  As this process 
continues the goal is to decrease the value of ψ  until 
no improvement can be achieved by sensor relocation.  
This is the basic strategy adopted in this paper via the 
PWL-TLP algorithm that is detailed in Section 4.  For 
comparison, an evolutionary approach often used in 
global optimization is also applied to PWL-SELP; this 
technique, called differential evolution, is outlined in 
the following section. 

 
3. Differential Evolution (DE): Introduced by Storn 
and Price [1997], Differential Evolution (DE) is an 
evolutionary algorithm used to solve continuous space 
optimization problems.  Like most evolutionary 
techniques, DE begins with a population of initial 
solutions which are then modified through the 
processes of mutation and crossover, thereby evolving 
a generation of improved solutions.  An overview of 
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DE, using notation similar to that of Storn and Price, 
follows. 

Begin by representing the problem variables as a D-
dimensional vector.  Initialize the algorithm by 
randomly generating NP initial solutions, called 
population members, represented as 

, 1, 2, ,( , ,..., )i G i G i G iD Gx x x=x  for 1,2,...,i NP= , where 

G is the generation.  The mutation process randomly 
chooses a population member 1,r Gx  to form the base 

of the mutation.  Then the weighted difference of two 
different randomly chosen population members, 2,r Gx  

and 3,r Gx , are added to the base.  NP mutated vectors 

are formed in this way, with [0,2]F ∈  being a scaling 

factor. 

Mutation: , 1 1, 2, 3,( )i G r G r G r GF+ = + −v x x x  

where 1 2 3i r r r≠ ≠ ≠    

Next, the mutated vectors undergo crossover with the 
population in generation G according to the following 
rule: 

Crossover: 

, 1
, 1

,

 if ( ) or if ( )

   if ( ) and ( )
ij G

ij G
ij G

v j rnbr i rand j CR
u

x j rnbr i rand j CR
+

+
= ≤=  ≠ >

, 

1,2,...,j D=  

where [0,1]CR ∈  is the crossover constant, ( )rand j  

is a uniform random number in [0,1] , and ( )rnbr i  is a 

randomly chosen index in {1,2,..., }D  that ensures that 

, 1i G+u  gets at least one value from , 1i G+v .  Note that 

higher values of CR encourage more mutated variables 
to pass on to the trial vector , 1i G+u .  If , 1i G+u  yields a 

better objective value than ,i Gx , then ,i Gx  is replaced 

with , 1i G+u  in the next generation.  Otherwise, ,i Gx  

carries onto the next generation.  This process 
continues until a maximum number of generations 
have been formed or the population converges to a 
single solution.  In order to balance the need to 
adequately explore the solution space and quickly 
converge to a solution, tuning of the control 
parameters (NP, F, and CR) is necessary.   

Several variations of DE have been suggested (e.g., 
Fan and Lampinen [2003], Kaelo and Ali [2006]) 
including Modified Differential Evolution (MDE) 
developed by Bergey and Ragsdale [2005].  MDE 
differs from DE in the mutation process.  To choose 

1,r Gx , the base of the mutation, the population 

members are sorted from highest fitness to lowest.  
Then, starting from the top of the list, a series of 
Bernoulli trials are performed until a success is found.  
The successful population member is chosen as the 
base of the mutation.  The remainder of the DE 
algorithm remains unchanged.  The Bernoulli trials are 
controlled by the probability of a successful Bernoulli 
trial (PR).  The idea behind this modification is that by 
using fitter population members as the base for 
mutation, the algorithm will converge faster.  This, of 
course, comes at the expense of tuning PR, another 
problem dependent control parameter.  Note that when 
PR =1, the best population member is always chosen 
as the base of the mutation which gives another 
common variation of DE. 

Because the basic form of DE suffered from high 
computation times when applied to the sensor location 
problem, MDE was implemented for comparison with 
PWL-TLP.  Empirical testing resulted in the following 
control variable settings: 0.5F = , 0.8CR = , and 

0.5PR = .  As suggested by Storn and Price [1997], 
NP was set to 10D, which is 20 times the number of 
sensors, i.e. 20m.  For the purpose of crossover, each 
sensor location (i.e. coordinate pair) was treated as a 
single entity.  Initial solutions were generated by 
choosing random coordinates from the smallest 
rectangle that would encompass the piecewise linear 
curve.  During the mutation process, if a mutated 
sensor location is located outside this rectangular 
region, it is forced back to the nearest border of the 
rectangle.  The implementation of MDE was 
developed by modifying the Matlab code, run1.m and 
devec3.m, provided by Storn and Price [2006].  The 
objective function was evaluated based on the 
breakpoints of the piecewise linear curve and a 50-
point grid uniformly distributed along the piecewise 
linear curve. 

 
4. Piecewise Linear - Toward the Largest Peak 
(PWL-TLP): As noted in Cavalier et al. [2007], given 
a set of sensor locations within a convex polygonal 

region 2S ⊂ � , the peaks (or points of maximum 
probability of non-detection) can be effectively 
approximated by using the vertices of the Voronoi 
polygons generated by the sensor locations and the 
boundary of S.  This was shown to be more efficient 
that discretizing the entire set S, and was the basic 
strategy employed by Cavalier et al. [2007] in solving 
the planar sensor location problem. 
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However, it is easily demonstrated that the vertices of 
the Voronoi polygons are insufficient to attain a 
suitable approximation of the probability of non-
detection if the domain is a piecewise linear curve.  
Since the maximum probability of non-detection tends 
to occur along the boundaries of the Voronoi 
polygons, it was determined that a good 
approximation of the maximum probability of non-
detection could be determined by utilizing two sets of 
points: the breakpoints jt  of PWL and the points is  

where PWL intersects the Voronoi diagram (See 
Figure 1).  Once the probability of non-detection is 
determined for each intersection point is  and each 

breakpoint jt , the sensor location within each 

Voronoi polygon is repositioned by moving it toward 
the largest local peak(s) defined by these points, thus 
reducing the peak (probability) and improving the 
overall objective value.  Moving an individual sensor 
may not improve the objective at all; in fact, it may 
actually make the objective worse.  Therefore, all 
sensors are moved simultaneously using local 
information derived from the individual Voronoi 
polygons and PWL.  After repeating this process until 
no further improvement is possible, the sensors are 
repositioned using global information derived from the 
Voronoi diagram and PWL to fine tune the solution.  
This second phase can result in a significant 
improvement in the final solution; however, 
computational testing has shown that using only global 
information is generally inferior to using local 
information followed by global information.  A more 
precise mathematical statement of the algorithm 
follows. 

x 3 k

s 3
s 2

s 1

V 1 k  =  S 1 k  U  T 1 k   =  { s 1 }  U  { t 1 }
V 2 k  =  S 2 k  U  T 2 k   =  { s 1 ,  s 2 ,  s 3 ,  s 4 }  U  { t 2 ,  t 4 }
V 3 k  =  S 3 k  U  T 3 k   =  { s 2 ,  s 3 ,  s 4 }  U  { t 3 ,  t 5 }

s 4

t 1

t 2

t 3

t 4

t 5

P W L

V o r o n o i  D i a g r a m

x 2 k

x 1 k

 

Figure 1.  Sets k
iV  Defined by PWL, the Voronoi 

Diagram, and Three Sensors 

 
PWL-TLP Algorithm 

PHASE I – This phase uses local information 
derived from the Voronoi diagram to reposition 
the sensors.  

Step 1.  Set the iteration counter 1k =  and choose 

an initial set of sensor locations 1 ,...,k k
m S∈x x  

Step 2.  Find the Voronoi diagram corresponding 

to the discrete set of points 1 ,...,k k
mx x  and form a 

tessellation of the convex hull of PWL.  Let k
iS  

represent the set of points where PWL intersects 
the boundary of the Voronoi polygon 

corresponding to sensor location k
ix  (see Figure 

1).  Let k
iT  represent the subset of vertices of 

PWL contained in the Voronoi polygon 

corresponding to sensor location k
ix .  Finally, Let 

k k k
i i iV S T= ∪ .  k

iV  is the set of points in the 

Voronoi polygon containing k
ix  that will be used 

to approximate the maximum probability of non-
detection.  

Step 3.  Determine the probability of non-

detection ( )( )
1

( ) 1 ,
m

k
j j i j i

i

q q dπ
=

 = = −  ∏v v x  for 

each point 
1

m
k

j i
i

V
=

∈v ∪  . 

Step 4.  For each sensor location kix , let 

max max
k

j i

k
i j

V
q q

∈
=

v
 and let 

{ }max max:k k k
i j i j iV V q q= ∈ =v .  That is, max

k
iq  is 

the maximum probability associated with the 

points contained in k
iV and max

k
iV  is the 

corresponding set of points.  The current 
maximum probability of non-detection is 

max max
1,..,

maxk k
i

i m
q q

=
= . 

Step 5.  Compute 
max

( )
k

j i

k
i j i

V∈
= −∑

v

h v x  and let 

1( ,..., )t t t
m=h h h .  Then /h h  is a unit direction 

vector that attempts to move each sensor location 
k
ix  toward the largest local peak(s) in its Voronoi 
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polygon. 

Step 6.  For each sensor location kix , compute 

( )1 /k k
i i i

+ = + ∆x x h h  for step length ∆ .   Find 

1 1 1k k k
i i iV S T+ + += ∪ , the set of points 

corresponding to each location 1k
i

+x .  Determine 

the probability of non-detection jq for each point 

1

1

m
k

j i
i

V +

=
∈v ∪  and the corresponding value of 

1
max
kq + . 

Step 7.  If 1
max max
k kq q+ <  , then replace k  by 1k +  

and go to Step 4.  Otherwise, replace ∆  by 0.5∆ .  
If ∆ < ε , then stop; otherwise, go to Step 6. 

 

PHASE II – This phase uses global information 
derived from the Voronoi diagram to reposition 
the sensor locations of Phase I.  

Step 8.  Given a set of sensor locations 1 ,...,k k
mx x  

determined in Phase I, set the iteration counter 
1k = . 

Step 9.  Find the Voronoi diagram corresponding 

to the discrete set of points 1 ,...,k k
mx x  and form a 

tessellation of the convex hull of PWL.  Let k
iS  

represent the set of points where PWL intersects 
the boundary of the Voronoi polygon 

corresponding to sensor location kix .  Let k
iT  

represent the subset of vertices of PWL contained 
in the Voronoi polygon corresponding to sensor 

location k
ix .  Let k k k

i i iV S T= ∪ . 

Step 10.  Determine the probability of non-

detection ( )( )
1

( ) 1 ,
m

k
j j i j i

i

q q dπ
=

 = = −  ∏v v x  for 

each point 
1

m
k

j i
i

V
=

∈v ∪  . 

Step 11.  Let 

1

max max
m

k
j i

i

k
j

V

q q

=
∈

=
v ∪

 and let 

max max
1

:
m

k k k
j i j

i
V V q q

=

 = ∈ = 
 

v ∪ .  That is, max
kq  is 

the maximum probability associated with the 
points derived in all Voronoi polygons and max

kV  is 

the corresponding set of points.  Let max
k

iV  be the 

subset of max
kV  consisting of the points that are 

closest to k
ix . 

Step 12.  Compute 
max

( )
k

j i

k
i j i

V∈
= −∑

v

h v x  and let 

1( ,..., )t t t
m=h h h .  In this case,  /h h  is a unit 

direction vector that attempts to move sensor 

location k
ix  toward the closest global peak(s). 

Step 13.  For each sensor location kix , compute 

( )1 /k k
i i i

+ = + ∆x x h h  for step length ∆ .   Find 

1 1 1k k k
i i iV S T+ + += ∪ , the set of points 

corresponding to each location 1k
i

+x .  Determine 

the probability of non-detection jq for each point 

1

1

m
k

j i
i

V +

=
∈v ∪  along with 1

max
kq + , 1

max
kV + , and 1

max
k

iV + . 

Step 14.  If 1
max max
k kq q+ <  , then replace k  by 1k +  

and go to Step 11.  Otherwise, replace ∆  by 
0.5∆ .  If ∆ < ε , then stop; otherwise, go to Step 
13. 

 

Choosing a Set of Initial Solutions 

Since PWL-SELP is a nonconvex programming 
problem, it has many local optima, and the choice of 
initial solution plays an important role in final solution 
quality.  One option is to use many randomly 
generated initial solutions.  However, through 
empirical testing, it was determined that high quality 
solutions could be obtained from initial solutions 
generated by uniformly distributing sensors along the 
original piecewise linear function (PWL) or a second 
piecewise linear function (MPWL) derived from the 
midpoints of the original segments.  Thus, this was the 
tactic used to initiate PWL-TLP.  Four types of 
starting solution sets were generated.  Let L represent 
the length of PWL.  In a Type 1 initial solution, the m 
sensors are uniformly distributed along PWL in a 
symmetric fashion with sensor 1 located a distance d 
from 1t  and sensor m located a distance d from 1n+t .  

Thus, the distance between adjacent sensors is 
( 2 ) /( 1)L d m− − .  Seven different such starting 

solutions are generated by varying the value of d 
uniformly on the interval [0,0.25 ]L . 
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In a Type 2 starting solution, the sensors are separated 
by a uniform distance as they are located along PWL.  
For each solution, the separation distance between 
sensors is /L m .  Again, seven such solutions are 
generated.  The first solution set has sensor 1 located 
at 1t  and sensor m located at a distance /L m  from 

1n+t .  The last solution set has sensor 1 located at a 

distance /L m  from 1t  and sensor m located at 1n+t .  

The remaining starting solution sets are uniformly 
distributed between these two limiting cases. 

Whereas Types 1 and 2 generate starting solutions 
lying directly on PWL, Types 3 and 4 contain sensors 
locations that are not directly on PWL.  This is done 
by utilizing the same techniques used in defining 
Types 1 and 2, but applying the techniques to a second 
piecewise linear function, called the midpoint 
piecewise linear function (MPWL).  This function is 
easily generated by utilizing 1t  and 1n+t  along with 

the midpoint of each original piecewise linear segment 
(e.g. see Figure 2). 

Type 3 solutions are generated in exactly the same 
manner as Type 1 solutions except MPWL is used.  
Similarly, Type 4 solutions are generated by applying 
the techniques used in Type 2 solutions to MPWL. 

A total of (7 + 7 + 7 + 7) = 28 starting solutions were 
generated.  Figure 2 provides an example of each type 
of starting solution when there are five sensors 
( 5)m =  along with PWL and MPWL. 

P W L P W L

P W L

M P W L

P W L

M P W L

T y p e  1

T y p e  4T y p e  3

T y p e  2

 

Figure 2.  Examples of Starting Solutions 

 

 

Choosing a Step Length ∆ 

The choice of the step length ∆  in Step 6 of Phase I 
and Step 13 of Phase II also has a significant impact 
on the efficiency of the algorithm as well as the quality 
of the final solution.  If the initial ∆  is small, then 
many additional iterations may be necessary and the 
local optimum found will likely be near the initial 
solution.  Whereas if the initial ∆  is large, it may be 
possible to find a local optimum that is some distance 
away from the initial solution, but there may be an 
excessive number of unsuccessful steps where the 
objective does not improve.  Consider Phase 1.  Let 

1 ,...,k k
mx x  represent the current solution and for each 

k
ix , let { }max max:k k k

i j i j iV V q q= ∈ =v  as in Step 4.  

Let { }
max

min
1,...

min min ( ,
k

j i

k k
j i

i m V
d d

= ∈

 
=  

 v
v x .  That is min

kd  is 

the minimum distance between the sensor locations 
and their respective largest local peaks.  Then, to allow 
the algorithm the opportunity to find multiple local 
optima based on a single initial solution, several initial 

step sizes were used,  min
kdα  where 1,3,5,7,9α = .  

Note, however, that in Step 6, the step length may be 
reduced by multiples of 0.5 until a successful step is 

taken.  Let k∆  be the actual successful step length 
used at iteration k.  Then since the step lengths of 
successive iterations generally decrease during the 
course of the algorithm, the step length rule used for 

iteration 1k +  is  { }1
minmin 6 ,k kdα +∆ .  These parameter 

settings were chosen using empirical testing.  So, in 
essence, Phase I is solved five times with different step 
length parameters.  The best solution is then passed to 
Phase II, where the step length rule is 

{ }1
minmin 6 ,k kdβ +∆  with 1,3,5β = . 

 
5. Computational Results: The PWL-TLP algorithm 
was coded in FORTRAN and compiled with Compaq 
Visual FORTRAN Professional Edition 6.6.B.  PWL-
TLP was compared with the modified DE algorithm in 
Matlab that is outlined in section 3.  For the modified 
differential evolution (MDE) algorithm, which was 
compiled using Matlab Compiler version 7.0, a grid of 
50 uniformly-spaced points plus the breakpoints were 
used to discretize each piecewise linear curve and 
evaluate the maximum probability of non-detection.  
This grid size was chosen to attain a reasonable 
resolution while also taking into account cpu time.  
The initial population size was chosen as 20m where m 
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is the number of sensors; this choice was based on 
guidelines in Storn and Price [1997].  Twenty 
randomly generated populations were used to start 
MDE, and the best final solution was used for 
comparison with TLP-PWL.   

Both programs were run under identical conditions on 
a PC with an Intel Pentium 4 2.4 Ghz CPU with 512 
MB of RAM.  For comparison, the probability of non-
detection for the final solution of each algorithm was 
determined by utilizing a uniform 1000-point grid. 

Both algorithms were used to find sets of sensors to 
monitor three different piecewise linear curves when 
the dpf was gravity decay defined by 

21/( )  1 dd eπ −= − .  Piecewise Linear 1 (PWL1) has 

breakpoints  1 5{ ,..., }t t  = {(0,0), (3,8), (6,5), (7,9), 

(10,2)}.  PWL2 has breakpoints 1 8{ ,..., }t t  = {(0,0), 

(1,5), (4,10), (7,7), (10,9), (11,6), (14,6), (17,2)}, and 
PWL3 has breakpoints 1 11{ ,..., }t t   = {(0,0), (1,4), 

(3,7), (5,6), (7,3), (9,4), (10,6), (12,8), (14,6), (16,7), 
(17,10)}.  Tables 1, 2, and 3 summarize the results for 
the three different cases.  Considering all 57 problems, 
the average cpu time for PWL-TLP was 4.62 seconds 
whereas MDE required an average of 714.27 seconds 
for 20 runs (an average of 35.71 seconds per run).  
Even more importantly (as the cpu times may be 
compiler-dependent), PWL-TLP attained a better final 
in 40 of the 57 problems with an average probability 
difference of 0.0084 (37.8%).  The final solution of 
DE was better 17 times with an average probability 
difference of 0.0015 (0.30%).  Note that PWL-TLP 
yielded the better solution in all cases with more than 
10 sensors and as the number of sensors increases the 
quality of the PWL-TLP solutions become 
significantly better those provided by MDE.  Finally, 
the number of times the final solution of PWL-TLP 
was generated by Type 1, 2, 3, and 4 starting solutions 
was 11, 12, 20, and 14, respectively. 

 
6. Conclusion: This paper presented a heuristic 
algorithm for determining the location of a finite 
number of identical sensors to detect an event along a 
piecewise linear curve in the plane, when the objective 
is to minimize the maximum probability of non-
detection.  The problem is a difficult nonlinear 
nonconvex programming problem with a multitude of 
applications.  The heuristic algorithm utilizes Voronoi 
polygons and intersection points along the piecewise 
linear curve to estimate the probability of non-
detection and to determine a search direction.  

Computational results demonstrated that the algorithm 
is relatively fast and generates high-quality solutions. 
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Table 1:  Results for gravity decay 
21/( )  1 dd eπ −= −  on PWL1 

PWL-TLP Algorithm Modified Differential Evolution 

Number of 
Sensors 

Probability of 
Non-detection 

TLPP  

CPU Time 
(secs) 

Probability of 
Non-detection 

MDEP  

Total 
CPU Time 
(20 Runs) 

(secs) 

Average 
Probability of 
Non-detection 

Per Run 

Average 
CPU Time 
Per Run 
(secs) 

 
Difference 

TLP MDEP P−  

 

(% Difference) 
100*( )

min( , )
TLP MDE

TLP MDE

P P

P P

−
 

2 0.923979 0.17 0.923791 6.89 0.923800 0.34 0.000188 0.02 
3 0.825445 0.31 0.824666 13.78 0.824748 0.68 0.000779 0.09 
4 0.686947 0.58 0.688951 26.97 0.688992 1.34 -0.002004 -0.29 
5 0.609177 0.89 0.607635 49.90 0.608746 2.49 0.001542 0.25 
6 0.452588 1.63 0.450589 74.57 0.453885 3.72 0.001999 0.44 
7 0.365932 1.64 0.364393 121.32 0.366678 6.06 0.001539 0.42 
8 0.270097 2.65 0.274351 168.94 0.277947 8.44 -0.004254 -1.57 
9 0.182762 3.45 0.184481 231.64 0.185757 11.58 -0.001719 -0.94 
10 0.130374 4.19 0.137821 343.05 0.140096 17.15 -0.007447 -5.71 
11 0.103159 4.43 0.106926 442.21 0.111480 22.10 -0.003767 -3.65 
12 0.053221 4.73 0.063218 488.37 0.063956 24.41 -0.009997 -18.78 
13 0.037402 5.91 0.041882 718.75 0.046033 35.93 -0.004480 -11.98 
14 0.019408 6.36 0.025312 778.23 0.027888 38.90 -0.005904 -30.42 
15 0.014571 7.15 0.021933 850.52 0.023684 42.52 -0.007362 -50.53 
16 0.009566 7.32 0.013199 805.29 0.015660 40.26 -0.003633 -37.98 
17 0.004915 9.61 0.007855 1091.72 0.009707 54.58 -0.002940 -59.82 
18 0.002360 10.17 0.005821 866.13 0.006943 43.30 -0.003461 -146.65 
19 0.001794 10.40 0.002914 919.49 0.005414 45.97 -0.001120 -62.43 
20 0.000442 12.48 0.002035 884.45 0.003553 44.22 -0.001593 -360.41 
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Table 2:  Results for gravity decay 
21/( )  1 dd eπ −= −  on PWL2 

PWL-TLP Algorithm Modified Differential Evolution 

Number of 
Sensors 

Probability of 
Non-detection 

TLPP  

CPU Time 
(secs) 

Probability of 
Non-detection 

MDEP  

Total 
CPU Time 
(20 Runs) 

(secs) 

Average 
Probability of 
Non-detection 

Per Run 

Average 
CPU Time 
Per Run 
(secs) 

 
Difference 

TLP MDEP P−  

 

(% Difference) 
100*( )

min( , )
TLP MDE

TLP MDE

P P

P P

−
 

2 0.958736  0.28 0.958549 6.38 0.958556 0.31 0.000187 0.02 
3 0.896845  0.46 0.896029 13.01 0.896065 0.64 0.000816 0.09 
4 0.812251  0.71 0.810871 24.20 0.811012 1.20 0.001380 0.17 
5 0.754757  1.00 0.752736 43.59 0.752779 2.17 0.002021 0.27 
6 0.625782  1.60 0.626193 75.81 0.627113 3.78 -0.000411 -0.07 
7 0.552479  1.81 0.558455 123.13 0.558602 6.15 -0.005976 -1.08 
8 0.494787  2.45 0.492183 235.58 0.495358 11.77 0.002604 0.53 
9 0.345942  2.82 0.345611 286.93 0.345862 14.34 0.000331 0.10 
10 0.325439  3.02 0.321957 454.82 0.327716 22.73 0.003482 1.08 
11 0.228723  3.86 0.255171 489.04 0.257567 24.45 -0.026448 -11.56 
12 0.167942  4.44 0.183760 601.02 0.187277 30.04 -0.015818 -9.42 
13 0.141588  4.78 0.160231 930.38 0.169489 46.51 -0.018643 -13.17 
14 0.098016  5.46 0.110165 1188.63 0.113764 59.42 -0.012149 -12.39 
15 0.071787  5.99 0.085766 1680.22 0.091443 84.00 -0.013979 -19.47 
16 0.062824  6.47 0.079274 1809.28 0.082416 90.46 -0.016450 -26.18 
17 0.031273  7.94 0.044305 1847.05 0.052136 92.34 -0.013032 -41.67 
18 0.026950  8.34 0.038961 1671.71 0.044773 83.58 -0.012011 -44.57 
19 0.017278  9.33 0.028478 2138.63 0.034182 106.92 -0.011200 -64.82 
20 0.008651 10.22 0.019464 2219.61 0.027278 110.97 -0.010813 -124.99 

 

 



 

Proceedings of 2008 NSF Engineering Research and Innovation Conference, Knoxville, Tennessee Grant #0400140 

 

Table 3:  Results for gravity decay 
21/( )  1 dd eπ −= −  on PWL3 

PWL-TLP Algorithm Modified Differential Evolution 

Number of 
Sensors 

Probability of 
Non-detection 

TLPP  

CPU Time 
(secs) 

Probability of 
Non-detection 

MDEP  

Total 
CPU Time 
(20 Runs) 

(secs) 

Average 
Probability of 
Non-detection 

Per Run 

Average 
CPU Time 
Per Run 
(secs) 

 
Difference 

TLP MDEP P−  

 

(% Difference) 
100*( )

min( , )
TLP MDE

TLP MDE

P P

P P

−
 

2 0.942040 0.33 0.941996 6.76 0.942005 0.33 0.000044 0.005 
3 0.880704 0.58 0.881048 13.80 0.881076 0.68 -0.000344 -0.04 
4 0.811110 0.86 0.809195 29.33 0.809580 1.46 0.001915 0.24 
5 0.686219 1.30 0.690278 44.76 0.690637 2.23 -0.004059 -0.59 
6 0.631843 1.79 0.630601 87.92 0.630845 4.39 0.001242 0.20 
7 0.536986 2.27 0.531142 129.05 0.533892 6.45 0.005844 1.10 
8 0.420759 2.83 0.420389 190.64 0.420873 9.53 0.000370 0.09 
9 0.346431 3.11 0.352247 286.95 0.358809 14.34 -0.005816 -1.68 
10 0.299309 3.47 0.300323 502.11 0.304929 25.10 -0.001014 -0.34 
11 0.233970 4.48 0.242710 573.40 0.247077 28.66 -0.008740 -3.74 
12 0.148366 4.73 0.156838 809.13 0.160759 40.45 -0.008472 -5.71 
13 0.116869 5.17 0.135757 868.71 0.140185 43.43 -0.018888 -16.16 
14 0.099422 6.20 0.109824 1767.85 0.113187 88.39 -0.010402 -10.46 
15 0.067541 6.40 0.077230 1558.93 0.086828 77.94 -0.009689 -14.35 
16 0.039541 8.50 0.052981 1616.18 0.059911 80.80 -0.013440 -33.99 
17 0.031710 8.20 0.044998 1414.37 0.049662 70.71 -0.013288 -41.90 
18 0.020541 8.74 0.028283 2058.75 0.038232 102.93 -0.007742 -37.69 
19 0.013209 9.44 0.021848 2144.96 0.026994 107.24 -0.008639 -65.40 
20 0.007867 10.15 0.017381 1888.44 0.021983 94.41 -0.009514 -120.94 
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