

Proceedings of 2008 NSF Engineering Research and Innovation Conference, Knoxville, Tennessee Grant #0400140

Minimax Sensor Location to Monitor a Piecewise Linear Curve

Tom M. Cavalier
The Pennsylvania State University

University Park, PA 16802

Whitney A. Conner
The Pennsylvania State University

University Park, PA 16802

Enrique del Castillo
The Pennsylvania State University

University Park, PA 16802

Abstract: This paper addresses the problem of
locating a finite number of sensors to detect an event
occurring along a piecewise linear curve. The
objective is to minimize the maximum probability of
non-detection. This sensor location problem has
several applications, including the placement of
sentries along a border to detect enemy penetration
and the location of cell phone towers along a highway.
The problem is a difficult nonlinear nonconvex
programming problem even in the case of two sensors.
A fast heuristic based on Voronoi diagrams is
developed in this paper. The algorithm can quickly
generate high-quality solutions. Computational
experience is provided.

1. Introduction: Suppose that an event occurs along a

piecewise linear curve in 2
� . The problem is to

position a finite number of identical sensors so that the
probability of detecting such an event is maximized,
assuming that the effectiveness of each sensor
decreases with its distance from the event. The
solution to such a problem has numerous applications;
for example, the placement of sensors along a border
to detect enemy penetration, or the location of sensors
to monitor events along a roadway. Another
application would be to provide uninterrupted cell
phone service along a major highway.

The above applications require locating a network of
sensors where it is crucial that an event does not go
undetected because of its location. The problem can
be considered a facility location problem with an
objective of providing equitable service to the
customers, where the facilities being located are the

sensors, and the customers are the event (source)
locations. It can be classified as a continuous
multifacility problem; however, in this problem, the
objective terms are not simply weighted distances as in
most location problems, but a propagation function of
distance converted into probabilities of detection.

A planar version of this problem has been addressed
by Drezner and Wesolowsky [1997] and Cavalier, et
al. [2007], who demonstrated that a suitable choice of
objective function is one that minimizes the maximum
probability of nondetection. That is, the poorest
response is made to be as good as possible. Minimax
location models have also been used in other
applications such as locating fire stations, hospitals
and ambulance bases [Elzinga and Hearn 1972,
Plastria 1995].

It is assumed that events, within the scope of this
research, produce a ‘signal’ that interacts with the
environment through which they propagate and the
signal intensity decreases as a function of the distance
between the sensor and the event. As mention in
Drezner and Wesolowsky [1997] and Cavalier, et al.
[2007], these detection probability functions (dpf) can
be modeled in a variety of ways where ()dπ

represents the probability of detecting an event at a
distance d. Some of the most common dpfs are (1)

power decay, ()
n

d
d

απ
µ

=
+

 , 0 α µ< ≤ , 0n > ;

(2) exponential decay, ()
ndd Ae βπ −= , 0 1A< ≤ ,

, 0nβ > ; and (3) gravity decay, /() 1
nk dd eπ −= − ,

NSF GRANT #0400140
NSF PROGRAM NAME: Operations Research

Proceedings of 2008 NSF Engineering Research and Innovation Conference, Knoxville, Tennessee Grant #0400140

, 0k n > . By changing the dpf parameters, families of
detection probability functions can be generated. In
this paper, computational experience is generated
using gravity decay, although the algorithms
developed in this paper are not tailored for a specific
dpf, but address the problem in a more general sense.

The following assumptions are made for the piecewise
linear sensor location problem (PWL-SELP).

1. The m sensors to be located are identical.
2. The region to be monitored is piecewise

linear curve PWL in the plane 2()� .

3. The event occurs with equal probability
anywhere along PWL.

4. There are no existing sensors.
5. The detection probability function is only

dependent on the distance from the event to
the ith sensor.

6. All sensors are in perfect working order with
no internal or external influences affecting
performance. This idealized sensor has
perfect discrimination and no false detections.
That is, it will signal a detection only when
the event is present.

7. The effectiveness of a sensor is independent
of its location.

8. There are no constraints on the location of the
sensors.

9. The probability of detection is a non-
increasing, real-valued, continuous function
of distance from the event.

10. The sensors operate independently of each
other.

It is understood that these simplifications may not be
valid in some actual cases. However, achieving
solutions to simpler models can provide the
foundation, insight and understanding to develop
methods for more complex models. Because of the
nonconvex nature of the objective function, verifying
that the solution obtained is a global optimum can be
quite difficult even for small problems.

Drezner and Wesolowsky [1997] addressed the
problem of locating p-identical signal detectors on a
unit line and a unit square. For the unit line problem,
they used mathematical programming and a special
algorithm designed to achieve the necessary conditions
for optimality. For the square planar problem, four
procedures were considered: a univariate search, a
mathematical programming formulation, simulated
annealing, and a Demjanov-type method. The planar

problem was formulated using a finite number of
possible event locations to produce a uniform grid
covering the square region. This provides an
approximate solution to the continuous problem.

The Demjanov-type algorithm, according to Drezner
and Wesolowsky, provided the best solutions for the
test problems in a ‘reasonable’ run time. The current
station locations are improved by moving them in the
direction of steepest descent. The direction is found
using a method proposed by Demjanov [1968]. The
objective function is then optimized along this
direction using a one-dimensional optimization
procedure.

Cavalier, et al. [2007] address the minimax sensor
location problem when the underlying domain is an
arbitrary convex polygon in the plane. They
developed an algorithm called Toward the Largest
Peak (TLP) that relies on Voronoi diagrams to
approximate the probability of non-detection and
generate search directions. A Voronoi diagram can be
described as follows [Preparata and Shamos, 1985]:
Let R be a set containing a finite number of points
(e.g. sensors) in the plane. For each point i R∈p , the

set of locations in the plane closer to ip than any other

point in S is an element of the Voronoi polygon of ip ,
denoted ()V i . The Voronoi diagram associated with

R is V = { }(1),..., ()V V n , where n is the number of

points contained in R. Several algorithms exist for
computing Voronoi diagrams. Okabe et al. [1992] give
a detailed description of incremental, divide-and-
conquer, and plane-sweep methods. Through
computational testing, Cavalier, et al. [2007]
demonstrated that the TLP algorithm was quite fast
and typically generated solutions that were superior to
MATLAB’s Fminimax, an algorithm specifically
designed to solve minimax-type problems.

From an application standpoint, research has been
done in the field of wireless communication,
specifically with respect to the base station location
problem (BSTLP). With the increased demand for
mobile communication services and deregulation acts
(Tutschku 1998), the competition between service
providers and potential revenues has driven the
research for finding an optimal deployment of base
stations which is both cost effective and provides the
maximum possible coverage. The BSTLP involves
locating multiple base stations within a region while
providing an acceptable quality of service to mobiles
(Howitt and Ham 1999). The BSTLP is different from

Proceedings of 2008 NSF Engineering Research and Innovation Conference, Knoxville, Tennessee Grant #0400140

the sensor location problem in that the traffic and
capacity on each base station is an important
consideration.

Although there are similarities between the p-center
problem (e.g., Love et al. [1973], Elzinga et al. [1976],
Suzuki and Drezner [1996]) and the sensor location
problem, there are significant differences. The p-
center minimizes the maximum distance between
facilities and demand points. It is an allocation
problem, and thus each demand point is assigned to
and interacts with its closest facility. On the other
hand, the objective function in the sensor location
problem involves the product of probabilities, making
each event point interact with all sensors. It is easy to
see that an optimal set of facility locations for the p-
center problem will, in general, be a very poor solution
to the sensor location problem.

Prior attempts at solving signal detection problems
have focused on problems where random events
occurred in a continuous planar region. These
techniques are not directly applicable when the
underlying domain is a piecewise linear curve. It is
also easy to show that attempting to derive an
approximate solution by utilizing the convex hull of
the breakpoints of the piecewise linear function results
in very poor solution quality. In the spirit of Cavalier,
et al. [2007], this paper attempts to exploit the
geometry of the problem rather than consider the
specific form of the objective function. This is done
by deriving local information from Voronoi polygons
and adjusting sensor positions by a technique called
toward the largest peak (TLP). The remainder of this
paper is organized as follows: The succeeding section
provides a mathematical formulation of the problem.
This is followed by a detailed description of
differential evolution, the TLP algorithm,
computational experience, and concluding remarks.

2. PWL-SELP Mathematical Model: Let PWL

represent a piecewise linear curve in 2� and let
{ : 1,.., }iT i b= =t represent the set of breakpoints

associated with PWL. Suppose that an event occurs at
location (,)x y PWL= ∈z and that the placement of m

sensors (detectors) must be decided to monitor PWL.
These sensors may or may not be located directly on
PWL. For convenience, an event occurring at location
z will be referred to simply as event z. The probability
of detecting the event with the ith sensor (located at

(,)i i ix y=x) is ()idπ where

2 2(,) () ()i i i id d x x y y= = − + −z x represents the

Euclidean distance between sensor i and event z. The
poorest response for the PWL-SELP will occur where
the probability of non-detection is largest. Under the
minimax criterion the largest probability of non-
detection for PWL should be made as small as
possible. Let ()1 2, , , m=X x x x… denote the vector of

all sensor locations. Then if the m sensors operate
independently of each other, the probability that an
event z is not detected for a fixed set X of sensors is
the product that each sensor individually does not

detect event z and is given by ()()
1

1 ,
m

i
i

dπ
=

 − ∏ z x .

As in Cavalier, et al. [2007], events are assumed to
occur with equal probability anywhere along PWL.
Thus, the problem of minimizing the maximum
probability of non-detection can be stated as follows:

(PWL-SELP)

()

()()

1

1

1 2
, ,

, , 1

min , , , =

min max 1 ,

m

m

m

m

i i
i

d

ψ

π
=

   −  
  
∏

x x

x x z

x x x

z x

…

…

…

As mentioned earlier, (1) is a difficult nonlinear,
nonconvex programming problem when 1m > . A
solution algorithm for (1) can be visualized as an
iterative two-phase process. For a fixed set of sensors
locations, the value of ψ is found (or approximated).
In general, the calculation of the value of ψ is
nontrivial and is often approached through
discretization of the domain. The sensors are then
moved and ψ is recalculated. As this process
continues the goal is to decrease the value of ψ until
no improvement can be achieved by sensor relocation.
This is the basic strategy adopted in this paper via the
PWL-TLP algorithm that is detailed in Section 4. For
comparison, an evolutionary approach often used in
global optimization is also applied to PWL-SELP; this
technique, called differential evolution, is outlined in
the following section.

3. Differential Evolution (DE): Introduced by Storn
and Price [1997], Differential Evolution (DE) is an
evolutionary algorithm used to solve continuous space
optimization problems. Like most evolutionary
techniques, DE begins with a population of initial
solutions which are then modified through the
processes of mutation and crossover, thereby evolving
a generation of improved solutions. An overview of

Proceedings of 2008 NSF Engineering Research and Innovation Conference, Knoxville, Tennessee Grant #0400140

DE, using notation similar to that of Storn and Price,
follows.

Begin by representing the problem variables as a D-
dimensional vector. Initialize the algorithm by
randomly generating NP initial solutions, called
population members, represented as

, 1, 2, ,(, ,...,)i G i G i G iD Gx x x=x for 1,2,...,i NP= , where

G is the generation. The mutation process randomly
chooses a population member 1,r Gx to form the base

of the mutation. Then the weighted difference of two
different randomly chosen population members, 2,r Gx

and 3,r Gx , are added to the base. NP mutated vectors

are formed in this way, with [0,2]F ∈ being a scaling

factor.

Mutation: , 1 1, 2, 3,()i G r G r G r GF+ = + −v x x x

where 1 2 3i r r r≠ ≠ ≠

Next, the mutated vectors undergo crossover with the
population in generation G according to the following
rule:

Crossover:

, 1
, 1

,

 if () or if ()

 if () and ()
ij G

ij G
ij G

v j rnbr i rand j CR
u

x j rnbr i rand j CR
+

+
= ≤=  ≠ >

,

1,2,...,j D=

where [0,1]CR ∈ is the crossover constant, ()rand j

is a uniform random number in [0,1] , and ()rnbr i is a

randomly chosen index in {1,2,..., }D that ensures that

, 1i G+u gets at least one value from , 1i G+v . Note that

higher values of CR encourage more mutated variables
to pass on to the trial vector , 1i G+u . If , 1i G+u yields a

better objective value than ,i Gx , then ,i Gx is replaced

with , 1i G+u in the next generation. Otherwise, ,i Gx

carries onto the next generation. This process
continues until a maximum number of generations
have been formed or the population converges to a
single solution. In order to balance the need to
adequately explore the solution space and quickly
converge to a solution, tuning of the control
parameters (NP, F, and CR) is necessary.

Several variations of DE have been suggested (e.g.,
Fan and Lampinen [2003], Kaelo and Ali [2006])
including Modified Differential Evolution (MDE)
developed by Bergey and Ragsdale [2005]. MDE
differs from DE in the mutation process. To choose

1,r Gx , the base of the mutation, the population

members are sorted from highest fitness to lowest.
Then, starting from the top of the list, a series of
Bernoulli trials are performed until a success is found.
The successful population member is chosen as the
base of the mutation. The remainder of the DE
algorithm remains unchanged. The Bernoulli trials are
controlled by the probability of a successful Bernoulli
trial (PR). The idea behind this modification is that by
using fitter population members as the base for
mutation, the algorithm will converge faster. This, of
course, comes at the expense of tuning PR, another
problem dependent control parameter. Note that when
PR =1, the best population member is always chosen
as the base of the mutation which gives another
common variation of DE.

Because the basic form of DE suffered from high
computation times when applied to the sensor location
problem, MDE was implemented for comparison with
PWL-TLP. Empirical testing resulted in the following
control variable settings: 0.5F = , 0.8CR = , and

0.5PR = . As suggested by Storn and Price [1997],
NP was set to 10D, which is 20 times the number of
sensors, i.e. 20m. For the purpose of crossover, each
sensor location (i.e. coordinate pair) was treated as a
single entity. Initial solutions were generated by
choosing random coordinates from the smallest
rectangle that would encompass the piecewise linear
curve. During the mutation process, if a mutated
sensor location is located outside this rectangular
region, it is forced back to the nearest border of the
rectangle. The implementation of MDE was
developed by modifying the Matlab code, run1.m and
devec3.m, provided by Storn and Price [2006]. The
objective function was evaluated based on the
breakpoints of the piecewise linear curve and a 50-
point grid uniformly distributed along the piecewise
linear curve.

4. Piecewise Linear - Toward the Largest Peak
(PWL-TLP): As noted in Cavalier et al. [2007], given
a set of sensor locations within a convex polygonal

region 2S ⊂ � , the peaks (or points of maximum
probability of non-detection) can be effectively
approximated by using the vertices of the Voronoi
polygons generated by the sensor locations and the
boundary of S. This was shown to be more efficient
that discretizing the entire set S, and was the basic
strategy employed by Cavalier et al. [2007] in solving
the planar sensor location problem.

Proceedings of 2008 NSF Engineering Research and Innovation Conference, Knoxville, Tennessee Grant #0400140

However, it is easily demonstrated that the vertices of
the Voronoi polygons are insufficient to attain a
suitable approximation of the probability of non-
detection if the domain is a piecewise linear curve.
Since the maximum probability of non-detection tends
to occur along the boundaries of the Voronoi
polygons, it was determined that a good
approximation of the maximum probability of non-
detection could be determined by utilizing two sets of
points: the breakpoints jt of PWL and the points is

where PWL intersects the Voronoi diagram (See
Figure 1). Once the probability of non-detection is
determined for each intersection point is and each

breakpoint jt , the sensor location within each

Voronoi polygon is repositioned by moving it toward
the largest local peak(s) defined by these points, thus
reducing the peak (probability) and improving the
overall objective value. Moving an individual sensor
may not improve the objective at all; in fact, it may
actually make the objective worse. Therefore, all
sensors are moved simultaneously using local
information derived from the individual Voronoi
polygons and PWL. After repeating this process until
no further improvement is possible, the sensors are
repositioned using global information derived from the
Voronoi diagram and PWL to fine tune the solution.
This second phase can result in a significant
improvement in the final solution; however,
computational testing has shown that using only global
information is generally inferior to using local
information followed by global information. A more
precise mathematical statement of the algorithm
follows.

x 3 k

s 3
s 2

s 1

V 1 k = S 1 k U T 1 k = { s 1 } U { t 1 }
V 2 k = S 2 k U T 2 k = { s 1 , s 2 , s 3 , s 4 } U { t 2 , t 4 }
V 3 k = S 3 k U T 3 k = { s 2 , s 3 , s 4 } U { t 3 , t 5 }

s 4

t 1

t 2

t 3

t 4

t 5

P W L

V o r o n o i D i a g r a m

x 2 k

x 1 k

Figure 1. Sets k
iV Defined by PWL, the Voronoi

Diagram, and Three Sensors

PWL-TLP Algorithm

PHASE I – This phase uses local information
derived from the Voronoi diagram to reposition
the sensors.

Step 1. Set the iteration counter 1k = and choose

an initial set of sensor locations 1 ,...,k k
m S∈x x

Step 2. Find the Voronoi diagram corresponding

to the discrete set of points 1 ,...,k k
mx x and form a

tessellation of the convex hull of PWL. Let k
iS

represent the set of points where PWL intersects
the boundary of the Voronoi polygon

corresponding to sensor location k
ix (see Figure

1). Let k
iT represent the subset of vertices of

PWL contained in the Voronoi polygon

corresponding to sensor location k
ix . Finally, Let

k k k
i i iV S T= ∪ . k

iV is the set of points in the

Voronoi polygon containing k
ix that will be used

to approximate the maximum probability of non-
detection.

Step 3. Determine the probability of non-

detection ()()
1

() 1 ,
m

k
j j i j i

i

q q dπ
=

 = = −  ∏v v x for

each point
1

m
k

j i
i

V
=

∈v ∪ .

Step 4. For each sensor location kix , let

max max
k

j i

k
i j

V
q q

∈
=

v
 and let

{ }max max:k k k
i j i j iV V q q= ∈ =v . That is, max

k
iq is

the maximum probability associated with the

points contained in k
iV and max

k
iV is the

corresponding set of points. The current
maximum probability of non-detection is

max max
1,..,

maxk k
i

i m
q q

=
= .

Step 5. Compute
max

()
k

j i

k
i j i

V∈
= −∑

v

h v x and let

1(,...,)t t t
m=h h h . Then /h h is a unit direction

vector that attempts to move each sensor location
k
ix toward the largest local peak(s) in its Voronoi

Proceedings of 2008 NSF Engineering Research and Innovation Conference, Knoxville, Tennessee Grant #0400140

polygon.

Step 6. For each sensor location kix , compute

()1 /k k
i i i

+ = + ∆x x h h for step length ∆ . Find

1 1 1k k k
i i iV S T+ + += ∪ , the set of points

corresponding to each location 1k
i

+x . Determine

the probability of non-detection jq for each point

1

1

m
k

j i
i

V +

=
∈v ∪ and the corresponding value of

1
max
kq + .

Step 7. If 1
max max
k kq q+ < , then replace k by 1k +

and go to Step 4. Otherwise, replace ∆ by 0.5∆ .
If ∆ < ε , then stop; otherwise, go to Step 6.

PHASE II – This phase uses global information
derived from the Voronoi diagram to reposition
the sensor locations of Phase I.

Step 8. Given a set of sensor locations 1 ,...,k k
mx x

determined in Phase I, set the iteration counter
1k = .

Step 9. Find the Voronoi diagram corresponding

to the discrete set of points 1 ,...,k k
mx x and form a

tessellation of the convex hull of PWL. Let k
iS

represent the set of points where PWL intersects
the boundary of the Voronoi polygon

corresponding to sensor location kix . Let k
iT

represent the subset of vertices of PWL contained
in the Voronoi polygon corresponding to sensor

location k
ix . Let k k k

i i iV S T= ∪ .

Step 10. Determine the probability of non-

detection ()()
1

() 1 ,
m

k
j j i j i

i

q q dπ
=

 = = −  ∏v v x for

each point
1

m
k

j i
i

V
=

∈v ∪ .

Step 11. Let

1

max max
m

k
j i

i

k
j

V

q q

=
∈

=
v ∪

 and let

max max
1

:
m

k k k
j i j

i
V V q q

=

 = ∈ = 
 

v ∪ . That is, max
kq is

the maximum probability associated with the
points derived in all Voronoi polygons and max

kV is

the corresponding set of points. Let max
k

iV be the

subset of max
kV consisting of the points that are

closest to k
ix .

Step 12. Compute
max

()
k

j i

k
i j i

V∈
= −∑

v

h v x and let

1(,...,)t t t
m=h h h . In this case, /h h is a unit

direction vector that attempts to move sensor

location k
ix toward the closest global peak(s).

Step 13. For each sensor location kix , compute

()1 /k k
i i i

+ = + ∆x x h h for step length ∆ . Find

1 1 1k k k
i i iV S T+ + += ∪ , the set of points

corresponding to each location 1k
i

+x . Determine

the probability of non-detection jq for each point

1

1

m
k

j i
i

V +

=
∈v ∪ along with 1

max
kq + , 1

max
kV + , and 1

max
k

iV + .

Step 14. If 1
max max
k kq q+ < , then replace k by 1k +

and go to Step 11. Otherwise, replace ∆ by
0.5∆ . If ∆ < ε , then stop; otherwise, go to Step
13.

Choosing a Set of Initial Solutions

Since PWL-SELP is a nonconvex programming
problem, it has many local optima, and the choice of
initial solution plays an important role in final solution
quality. One option is to use many randomly
generated initial solutions. However, through
empirical testing, it was determined that high quality
solutions could be obtained from initial solutions
generated by uniformly distributing sensors along the
original piecewise linear function (PWL) or a second
piecewise linear function (MPWL) derived from the
midpoints of the original segments. Thus, this was the
tactic used to initiate PWL-TLP. Four types of
starting solution sets were generated. Let L represent
the length of PWL. In a Type 1 initial solution, the m
sensors are uniformly distributed along PWL in a
symmetric fashion with sensor 1 located a distance d
from 1t and sensor m located a distance d from 1n+t .

Thus, the distance between adjacent sensors is
(2) /(1)L d m− − . Seven different such starting

solutions are generated by varying the value of d
uniformly on the interval [0,0.25]L .

Proceedings of 2008 NSF Engineering Research and Innovation Conference, Knoxville, Tennessee Grant #0400140

In a Type 2 starting solution, the sensors are separated
by a uniform distance as they are located along PWL.
For each solution, the separation distance between
sensors is /L m . Again, seven such solutions are
generated. The first solution set has sensor 1 located
at 1t and sensor m located at a distance /L m from

1n+t . The last solution set has sensor 1 located at a

distance /L m from 1t and sensor m located at 1n+t .

The remaining starting solution sets are uniformly
distributed between these two limiting cases.

Whereas Types 1 and 2 generate starting solutions
lying directly on PWL, Types 3 and 4 contain sensors
locations that are not directly on PWL. This is done
by utilizing the same techniques used in defining
Types 1 and 2, but applying the techniques to a second
piecewise linear function, called the midpoint
piecewise linear function (MPWL). This function is
easily generated by utilizing 1t and 1n+t along with

the midpoint of each original piecewise linear segment
(e.g. see Figure 2).

Type 3 solutions are generated in exactly the same
manner as Type 1 solutions except MPWL is used.
Similarly, Type 4 solutions are generated by applying
the techniques used in Type 2 solutions to MPWL.

A total of (7 + 7 + 7 + 7) = 28 starting solutions were
generated. Figure 2 provides an example of each type
of starting solution when there are five sensors
(5)m = along with PWL and MPWL.

P W L P W L

P W L

M P W L

P W L

M P W L

T y p e 1

T y p e 4T y p e 3

T y p e 2

Figure 2. Examples of Starting Solutions

Choosing a Step Length ∆

The choice of the step length ∆ in Step 6 of Phase I
and Step 13 of Phase II also has a significant impact
on the efficiency of the algorithm as well as the quality
of the final solution. If the initial ∆ is small, then
many additional iterations may be necessary and the
local optimum found will likely be near the initial
solution. Whereas if the initial ∆ is large, it may be
possible to find a local optimum that is some distance
away from the initial solution, but there may be an
excessive number of unsuccessful steps where the
objective does not improve. Consider Phase 1. Let

1 ,...,k k
mx x represent the current solution and for each

k
ix , let { }max max:k k k

i j i j iV V q q= ∈ =v as in Step 4.

Let { }
max

min
1,...

min min (,
k

j i

k k
j i

i m V
d d

= ∈

 
=  

 v
v x . That is min

kd is

the minimum distance between the sensor locations
and their respective largest local peaks. Then, to allow
the algorithm the opportunity to find multiple local
optima based on a single initial solution, several initial

step sizes were used, min
kdα where 1,3,5,7,9α = .

Note, however, that in Step 6, the step length may be
reduced by multiples of 0.5 until a successful step is

taken. Let k∆ be the actual successful step length
used at iteration k. Then since the step lengths of
successive iterations generally decrease during the
course of the algorithm, the step length rule used for

iteration 1k + is { }1
minmin 6 ,k kdα +∆ . These parameter

settings were chosen using empirical testing. So, in
essence, Phase I is solved five times with different step
length parameters. The best solution is then passed to
Phase II, where the step length rule is

{ }1
minmin 6 ,k kdβ +∆ with 1,3,5β = .

5. Computational Results: The PWL-TLP algorithm
was coded in FORTRAN and compiled with Compaq
Visual FORTRAN Professional Edition 6.6.B. PWL-
TLP was compared with the modified DE algorithm in
Matlab that is outlined in section 3. For the modified
differential evolution (MDE) algorithm, which was
compiled using Matlab Compiler version 7.0, a grid of
50 uniformly-spaced points plus the breakpoints were
used to discretize each piecewise linear curve and
evaluate the maximum probability of non-detection.
This grid size was chosen to attain a reasonable
resolution while also taking into account cpu time.
The initial population size was chosen as 20m where m

Proceedings of 2008 NSF Engineering Research and Innovation Conference, Knoxville, Tennessee Grant #0400140

is the number of sensors; this choice was based on
guidelines in Storn and Price [1997]. Twenty
randomly generated populations were used to start
MDE, and the best final solution was used for
comparison with TLP-PWL.

Both programs were run under identical conditions on
a PC with an Intel Pentium 4 2.4 Ghz CPU with 512
MB of RAM. For comparison, the probability of non-
detection for the final solution of each algorithm was
determined by utilizing a uniform 1000-point grid.

Both algorithms were used to find sets of sensors to
monitor three different piecewise linear curves when
the dpf was gravity decay defined by

21/() 1 dd eπ −= − . Piecewise Linear 1 (PWL1) has

breakpoints 1 5{ ,..., }t t = {(0,0), (3,8), (6,5), (7,9),

(10,2)}. PWL2 has breakpoints 1 8{ ,..., }t t = {(0,0),

(1,5), (4,10), (7,7), (10,9), (11,6), (14,6), (17,2)}, and
PWL3 has breakpoints 1 11{ ,..., }t t = {(0,0), (1,4),

(3,7), (5,6), (7,3), (9,4), (10,6), (12,8), (14,6), (16,7),
(17,10)}. Tables 1, 2, and 3 summarize the results for
the three different cases. Considering all 57 problems,
the average cpu time for PWL-TLP was 4.62 seconds
whereas MDE required an average of 714.27 seconds
for 20 runs (an average of 35.71 seconds per run).
Even more importantly (as the cpu times may be
compiler-dependent), PWL-TLP attained a better final
in 40 of the 57 problems with an average probability
difference of 0.0084 (37.8%). The final solution of
DE was better 17 times with an average probability
difference of 0.0015 (0.30%). Note that PWL-TLP
yielded the better solution in all cases with more than
10 sensors and as the number of sensors increases the
quality of the PWL-TLP solutions become
significantly better those provided by MDE. Finally,
the number of times the final solution of PWL-TLP
was generated by Type 1, 2, 3, and 4 starting solutions
was 11, 12, 20, and 14, respectively.

6. Conclusion: This paper presented a heuristic
algorithm for determining the location of a finite
number of identical sensors to detect an event along a
piecewise linear curve in the plane, when the objective
is to minimize the maximum probability of non-
detection. The problem is a difficult nonlinear
nonconvex programming problem with a multitude of
applications. The heuristic algorithm utilizes Voronoi
polygons and intersection points along the piecewise
linear curve to estimate the probability of non-
detection and to determine a search direction.

Computational results demonstrated that the algorithm
is relatively fast and generates high-quality solutions.

7. Acknowledgment: This material is based upon
work supported by the National Science Foundation
under Grant No. 0400140. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the author(s) and do not
necessarily reflect the views of the National Science
Foundation.

Proceedings of 2008 NSF Engineering Research and Innovation Conference, Knoxville, Tennessee Grant #0400140

Table 1: Results for gravity decay
21/() 1 dd eπ −= − on PWL1

PWL-TLP Algorithm Modified Differential Evolution

Number of
Sensors

Probability of
Non-detection

TLPP

CPU Time
(secs)

Probability of
Non-detection

MDEP

Total
CPU Time
(20 Runs)

(secs)

Average
Probability of
Non-detection

Per Run

Average
CPU Time
Per Run
(secs)

Difference

TLP MDEP P−

(% Difference)
100*()

min(,)
TLP MDE

TLP MDE

P P

P P

−

2 0.923979 0.17 0.923791 6.89 0.923800 0.34 0.000188 0.02
3 0.825445 0.31 0.824666 13.78 0.824748 0.68 0.000779 0.09
4 0.686947 0.58 0.688951 26.97 0.688992 1.34 -0.002004 -0.29
5 0.609177 0.89 0.607635 49.90 0.608746 2.49 0.001542 0.25
6 0.452588 1.63 0.450589 74.57 0.453885 3.72 0.001999 0.44
7 0.365932 1.64 0.364393 121.32 0.366678 6.06 0.001539 0.42
8 0.270097 2.65 0.274351 168.94 0.277947 8.44 -0.004254 -1.57
9 0.182762 3.45 0.184481 231.64 0.185757 11.58 -0.001719 -0.94
10 0.130374 4.19 0.137821 343.05 0.140096 17.15 -0.007447 -5.71
11 0.103159 4.43 0.106926 442.21 0.111480 22.10 -0.003767 -3.65
12 0.053221 4.73 0.063218 488.37 0.063956 24.41 -0.009997 -18.78
13 0.037402 5.91 0.041882 718.75 0.046033 35.93 -0.004480 -11.98
14 0.019408 6.36 0.025312 778.23 0.027888 38.90 -0.005904 -30.42
15 0.014571 7.15 0.021933 850.52 0.023684 42.52 -0.007362 -50.53
16 0.009566 7.32 0.013199 805.29 0.015660 40.26 -0.003633 -37.98
17 0.004915 9.61 0.007855 1091.72 0.009707 54.58 -0.002940 -59.82
18 0.002360 10.17 0.005821 866.13 0.006943 43.30 -0.003461 -146.65
19 0.001794 10.40 0.002914 919.49 0.005414 45.97 -0.001120 -62.43
20 0.000442 12.48 0.002035 884.45 0.003553 44.22 -0.001593 -360.41

Proceedings of 2008 NSF Engineering Research and Innovation Conference, Knoxville, Tennessee Grant #0400140

Table 2: Results for gravity decay
21/() 1 dd eπ −= − on PWL2

PWL-TLP Algorithm Modified Differential Evolution

Number of
Sensors

Probability of
Non-detection

TLPP

CPU Time
(secs)

Probability of
Non-detection

MDEP

Total
CPU Time
(20 Runs)

(secs)

Average
Probability of
Non-detection

Per Run

Average
CPU Time
Per Run
(secs)

Difference

TLP MDEP P−

(% Difference)
100*()

min(,)
TLP MDE

TLP MDE

P P

P P

−

2 0.958736 0.28 0.958549 6.38 0.958556 0.31 0.000187 0.02
3 0.896845 0.46 0.896029 13.01 0.896065 0.64 0.000816 0.09
4 0.812251 0.71 0.810871 24.20 0.811012 1.20 0.001380 0.17
5 0.754757 1.00 0.752736 43.59 0.752779 2.17 0.002021 0.27
6 0.625782 1.60 0.626193 75.81 0.627113 3.78 -0.000411 -0.07
7 0.552479 1.81 0.558455 123.13 0.558602 6.15 -0.005976 -1.08
8 0.494787 2.45 0.492183 235.58 0.495358 11.77 0.002604 0.53
9 0.345942 2.82 0.345611 286.93 0.345862 14.34 0.000331 0.10
10 0.325439 3.02 0.321957 454.82 0.327716 22.73 0.003482 1.08
11 0.228723 3.86 0.255171 489.04 0.257567 24.45 -0.026448 -11.56
12 0.167942 4.44 0.183760 601.02 0.187277 30.04 -0.015818 -9.42
13 0.141588 4.78 0.160231 930.38 0.169489 46.51 -0.018643 -13.17
14 0.098016 5.46 0.110165 1188.63 0.113764 59.42 -0.012149 -12.39
15 0.071787 5.99 0.085766 1680.22 0.091443 84.00 -0.013979 -19.47
16 0.062824 6.47 0.079274 1809.28 0.082416 90.46 -0.016450 -26.18
17 0.031273 7.94 0.044305 1847.05 0.052136 92.34 -0.013032 -41.67
18 0.026950 8.34 0.038961 1671.71 0.044773 83.58 -0.012011 -44.57
19 0.017278 9.33 0.028478 2138.63 0.034182 106.92 -0.011200 -64.82
20 0.008651 10.22 0.019464 2219.61 0.027278 110.97 -0.010813 -124.99

Proceedings of 2008 NSF Engineering Research and Innovation Conference, Knoxville, Tennessee Grant #0400140

Table 3: Results for gravity decay
21/() 1 dd eπ −= − on PWL3

PWL-TLP Algorithm Modified Differential Evolution

Number of
Sensors

Probability of
Non-detection

TLPP

CPU Time
(secs)

Probability of
Non-detection

MDEP

Total
CPU Time
(20 Runs)

(secs)

Average
Probability of
Non-detection

Per Run

Average
CPU Time
Per Run
(secs)

Difference

TLP MDEP P−

(% Difference)
100*()

min(,)
TLP MDE

TLP MDE

P P

P P

−

2 0.942040 0.33 0.941996 6.76 0.942005 0.33 0.000044 0.005
3 0.880704 0.58 0.881048 13.80 0.881076 0.68 -0.000344 -0.04
4 0.811110 0.86 0.809195 29.33 0.809580 1.46 0.001915 0.24
5 0.686219 1.30 0.690278 44.76 0.690637 2.23 -0.004059 -0.59
6 0.631843 1.79 0.630601 87.92 0.630845 4.39 0.001242 0.20
7 0.536986 2.27 0.531142 129.05 0.533892 6.45 0.005844 1.10
8 0.420759 2.83 0.420389 190.64 0.420873 9.53 0.000370 0.09
9 0.346431 3.11 0.352247 286.95 0.358809 14.34 -0.005816 -1.68
10 0.299309 3.47 0.300323 502.11 0.304929 25.10 -0.001014 -0.34
11 0.233970 4.48 0.242710 573.40 0.247077 28.66 -0.008740 -3.74
12 0.148366 4.73 0.156838 809.13 0.160759 40.45 -0.008472 -5.71
13 0.116869 5.17 0.135757 868.71 0.140185 43.43 -0.018888 -16.16
14 0.099422 6.20 0.109824 1767.85 0.113187 88.39 -0.010402 -10.46
15 0.067541 6.40 0.077230 1558.93 0.086828 77.94 -0.009689 -14.35
16 0.039541 8.50 0.052981 1616.18 0.059911 80.80 -0.013440 -33.99
17 0.031710 8.20 0.044998 1414.37 0.049662 70.71 -0.013288 -41.90
18 0.020541 8.74 0.028283 2058.75 0.038232 102.93 -0.007742 -37.69
19 0.013209 9.44 0.021848 2144.96 0.026994 107.24 -0.008639 -65.40
20 0.007867 10.15 0.017381 1888.44 0.021983 94.41 -0.009514 -120.94

Proceedings of 2008 NSF Engineering Research and Innovation Conference, Knoxville, Tennessee Grant #0400140

8. References:

Bergey, P., C. Ragsdale [2005] Modified Differential
Evolution: a Greedy Random Strategy for Genetic
Recombination, Omega: The International Journal of
Management Science 33:255-265.

Cavalier, T.M., W.A. Conner, E. del Castillo, S.I.
Brown [2007] A Heuristic Algorithm for Minimax
Sensor Location in the Plane, European Journal of
Operational Research 182:42-55.

Demjanov, V.F. [1968] Algorithms for Some Minimax
Problems, Journal of Computers and System Science
2:342-380.

Drezner, Z., G.O. Wesolowsky [1997] On the Best
Location of Signal Detectors, IIE Transactions
29(11):1007-1015.

Elzinga, D.J., D.W. Hearn [1972] Geometrical
Solutions for Some Minimax Location Problems,
Transportation Science 6:379-394.

Elzinga, D.J., D.W. Hearn, W.D. Randolph [1976]
Minimax Multifacility Location with Euclidean
Distances, Transportation Science 10:321-336.

Fan, H., J. Lampinen [2003] A Trigonometric
Mutation Operation to Differential Evolution, Journal
of Global Optimization 27:105-129.

Howitt, I., S.-Y Ham [1999] Base Station Location
Optimization, IEEE Vehicular Technology Conference
4:2067-2071.

Kaelo, P., M. Ali [2006] A Numerical Study of Some
Modified Differential Evolution Algorithms,
European Journal of Operations Research 169:1176-
1184.

Love, R.F., G.O. Wesolowsky, S.A. Kraemer [1973]
A Multifacility Minimax Location Method for
Euclidean Distances, International Journal of
Production Research 11:32-40.

Okabe, A.; Boots, B.; and Sugihara, K. [1992] Spatial
Tessellations: Concepts and Applications of Voronoi
Diagrams, New York: John Wiley and Sons Ltd.

Plastria, F. [1995] Continuous Location Problems, in
Facility Location: A Survey of Applications and
Methods, Edited by Z. Drezner, Springer-Verlag, New
York, pp. 225-262.

Preparata, F.P. and Shamos, M. I. [1985]
Computational Geometry: An Introduction, New
York: Springer-Verlag.

Storn, R., K. Price [1997] Differential Evolution- A
Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces, Journal of
Global Optimization 11: 341-359.

Storn, R., K. Price [2006] Differential Evolution (DE)
for Continuous Function Optimization.
http://www.icsi.berkeley.edu/~storn/code.html#matl
(accessed 30 November 2006).

Suzuki, A., Z. Drezner [1996] The p-Center Location
Problem in an Area, Location Science 4(1/2):69-82.

Tutschku, K. [1998] Demand-Based Radio Network
Planning of Cellular Mobile Communication Systems,
Proceedings - IEEE INFOCOM 3:1054-1061.

