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Abstract: This paper addresses the problem of 
locating a finite number of sensors to detect an event 
in a given planar region.  The objective is to minimize 
the maximum probability of non-detection where the 
underlying region consists of a convex polygon.   The 
sensor location problem has a multitude of 
applications, including the location of aircraft 
detection sensors, the placement of sentries along a 
border to detect enemy penetration, the detection of 
nuclear tests, and the detection of natural and 
hazardous man-made events.  The problem is a 
difficult nonlinear nonconvex programming problem 
even in the case of two sensors.  A fast heuristic based 
on Voronoi polygons is developed in this paper.  The 
algorithm can quickly generate high-quality solutions.  
Computational experience is provided. 
 

1. Introduction: Suppose that in a confined planar 
region an event occurs.  The problem is to position a 
finite number of sensors so that the probability of 
detecting such an event is maximized.  The 
effectiveness of each sensor decreases with its distance 
from the event.  The solution to such a problem has 
numerous applications.  For the military, the location 
of aircraft detection sensors, the placement of sentries 
along a border to detect enemy penetration, and the 
detection of nuclear tests are just three examples.  The 
detection of natural events as well as the detection of 
hazardous man-made events are also important 
applications.  These events can be the result of 
accidents as well as deliberate terrorist acts. 

The above applications require a network of sensors in 
which it is crucial that an event does not go undetected 
because of its location within a region.  This can be 
achieved with a minimax formulation because in such 
models, the poorest response is made to be as good as 
possible.  Other examples in which a minimax model 
is appropriate include locating fire stations, hospitals 
and ambulance bases [Elzinga and Hearn 1972, 
Plastria 1995]. 

With this in mind, the problem can be thought of as a 
facility location problem with an objective of 
providing equitable service to the customers, where 
the facilities being located are the sensors, and the 
customers are the event (source) locations.  In location 
theory terminology, a problem of this type can be 
classified as a continuous multifacility problem.  
However, in the problem studied here, the objective 
terms are not simply weighted distances as in most 
location problems, but a propagation function of 
distance converted into probabilities of detection. 

It is assumed that events, within the scope of this 
research, produce a ‘signal’ that interacts with the 
environment through which they propagate.  As the 
signal is transmitted from the event to the sensor (or 
vise-versa) various processes interact with the signal 
to produce noise.  The causes for the noise can vary, 
depending on the type of event one wishes to detect, 
however regardless of the type of processes that 
produce the noise, the effect is a reduction in signal 
intensity, referred to as signal ‘fading’ or signal 
attenuation. 
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Throughout this paper the specific noise generated by 
the sensor itself, such as thermal noise from the 
electronics and circuits, or interference from other 
sensors will be neglected.  That is, the idealized sensor 
will produce no noise and is perfectly shielded from 
interference. 

Propagation models can be used to estimate and 
predict the fading of a signal produced by an event as 
it traverses through a region.  In principle, the 
attenuation over every path between an event and 
sensor can be predicted.  This method produces a 
propagation model based on ray-tracing or ray-paths.  
However, to make this possible, detailed knowledge 
on every terrain feature in the region is necessary, 
which leads to the computational effort being 
excessive for continuous regions [Saunders 1999].  
Instead, a propagation model can be based on an 
empirical model, which is produced by fitting a 
function to an extensive set of actual path loss 
measurements.  The model can then be used in 
environments similar to the original [Saunders 1999].  
For many complex propagation models, no analytical 
form of the model exists.  Rather, a function generator 
(i.e., black box), is used to generate a functional value 
based on various inputs. 

Path loss can have various meanings, but here, it refers 
to the overall decrease in signal intensity due to an 
increase in distance between the event and the sensor.  
For example, for electromagnetic waves, as the signal 
radiates, the intensity ‘concentration’ spreads out in all 
directions into an approximate spherical surface [Perez 
1998].  Thus, empirical models usually involve some 
form of an inverse function of distance, with the 
parameters being adjusted to match propagation 
conditions. 

One such detection probability functions (dpf) is 
derived from the wireless communication industry, 
specifically macrocell placement.  Macrocells are the 
towers used outdoors for providing mobile services 
with coverage from around 1 km to many tens of 
kilometers [Saunders, 1999].  The derived dpf, 
referred to as power decay, is given by 

( )  
n

d
d

απ
µ

=
+

 , 0 α µ< ≤ , 0n >  where ( )dπ  is 

the probability of detecting an event at a distance d 
away for a given ratio α µ  and exponent n.  The 

probability of detecting an event at distance zero is 
given by the ratio α µ .  If α µ= , the detection 

probability is unity when the event occurs at a sensor.  
In addition, if n = 2 in this case, it becomes the 

standard inverse square law, which appears in models 
describing phenomena such as radio frequency 
intensity, gravitational attraction, and the force 
between charged particles. 

A second dpf, termed exponential decay, is given by 

( )  
ndd Ae βπ −= , 0 1A< ≤ , , 0nβ > where A is the 

probability of detection at 0d =  with parameter � 
and exponent n.  Exponential type models have had a 
reoccurring theme in many different disciplines for 
approximating the decay of a process.  Exponential 
decay occurs whenever something changes at a rate 
proportional to itself.  For example, in air quality 
management, a Gaussian model is used to predict the 
concentration levels of airborne pollutants from a 
source point.  Pollutant concentration decreases 
exponentially in the Gaussian model. 

A final dpf can be considered as a combination of the 
previous two dpf’s and has the form 

/( )  1
nk dd eπ −= − , , 0k n > .  This has exponential 

form with a power decay ( / )nk d  component and is 

referred to as gravity decay. 

By changing the dfp parameters, families of detection 
probability functions can be generated.  Also, the main 
objective here is to explore a solution procedure for 
producing good solutions to the sensor location 
problem in a timely fashion, for which these dpf’s are 
sufficiently realistic.  The algorithm developed in this 
paper is not tailored for a specific dpf, but addresses 
the problem in a more general sense. 

The following assumptions are made for the sensor 
location problem (SELP). 

1. The m sensors to be located are identical. 

2. The region S where detection takes place is a 

convex polygon in the plane 2( )� . 

3. The event occurs with equal probability 
anywhere in the region S.  

4. The region S contains no existing sensors. 

5. The detection probability function is only 
dependent on the distance from the event to 
the ith sensor. 

6. All sensors are in perfect working order with 
no internal or external influences affecting 
performance.  This idealized sensor has 
perfect discrimination and no false detections.  
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That is, it will signal a detection only when 
the event is present. 

7. The effectiveness of a sensor is independent 
of its location within the region S. 

8. There are no constraints on the location of the 
sensors except that they must be located 
within the region S.  That is, all points within 
the region S are candidates for sensor 
locations. 

9. The probability of detection is a non-
increasing, real-valued, continuous function 
of distance from the event. 

10. The sensors operate independently of each 
other. 

 

It is understood that these simplifications may not be 
valid in some actual cases.  However, achieving 
solutions to simpler models can provide the 
foundation, insight and understanding to develop 
methods for more complex models.  Because of the 
nonconvex nature of the objective function, verifying 
that the solution obtained is a global optimum can be 
quite difficult even for small problems. 

Drezner and Wesolowsky [1997] addressed the 
problem of locating p-identical signal detectors on a 
unit line and a unit square.  They considered two 

dpf’s: { }( ) min 1, /d R dλ λπ =   and ( ) kdd eπ −= .  For 

the unit line problem, they used mathematical 
programming and a special algorithm designed to 
achieve the necessary conditions for optimality.  While 
convergence of the algorithm was not proven, the 
algorithm always converged for their test problems 
and produced a better solution after each iteration. 

For the square planar problem, four procedures were 
considered: a univariate search, a mathematical 
programming formulation, simulated annealing, and a 
Demjanov-type method.  The planar problem was 
formulated using a finite number of possible event 
locations to produce a uniform grid covering the 
square region.  This provides an approximate solution 
to the continuous problem.   

The Demjanov-type algorithm, according to Drezner 
and Wesolowsky, provided the best solutions for the 
test problems in a ‘reasonable’ run time.  The current 
station locations are improved by moving them in the 
direction of steepest descent.  The direction is found 
using a method proposed by Demjanov [1968].  The 

objective function is then optimized along this 
direction using a one-dimensional optimization 
procedure. 

From an application standpoint, research has been 
done in the field of wireless communication, 
specifically with respect to the base station location 
problem (BSTLP), a problem to which the SELP could 
be applied.  With the increased demand for mobile 
communication services and deregulation acts 
(Tutschku 1998), the competition between service 
providers and potential revenues has driven the 
research for finding an optimal deployment of base 
stations which is both cost effective and provides the 
maximum possible coverage.  The BSTLP involves 
locating multiple base stations within a region while 
providing an acceptable quality of service to mobiles 
(Howitt and Ham 1999).  The BSTLP is different from 
the SELP in that the traffic and capacity on each base 
station is an important consideration. 

For the problem of locating one sensor in a planar 
region, with the detection probability being a 
decreasing function of distance, the maximum 
probability will occur at the point(s) where the 
distance between the sensor and the event is a 
maximum, which corresponds to the event occurring 
somewhere on the boundary of the region.  Thus the 
center of the smallest circle which encloses the region 
is the optimal placement for the sensor.  This problem 
is commonly called a 1-center problem [Elzinga and 
Hearn 1972, Plastria 1995] in facility location.  
However, when the number of sensors 1p > , the 

problem is again a difficult nonlinear nonconvex 
programming problem. 

For solving the 1-center problem, a method based on 
Voronoi diagrams [Shamos and Hoey, 1975] provides 
an understanding of the strengths of computational 
geometry.  Many location problems, previously 
considered quite hard, are being addressed using 
methods based on various types of Voronoi diagrams 
[Plastria, 1995, pg 262; see for example Iri, et al., 
1984, Okabe et al., 1992 and Aurenhammer, 1991,].  
A Voronoi diagram can be described as follows 
[Preparata and Shamos, 1985]: Let S be a set 
containing a finite number of points (e.g. sensors) in 
the plane.  For each point i S∈p , the set of locations 

in the plane closer to ip  than any other point in S is an 

element of the Voronoi polygon of ip , denoted ( )V i .  

The Voronoi diagram associated with S is V  = 

{ }(1),..., ( )V V n , where n is the number of points 
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contained in S.  Several algorithms exist for computing 
Voronoi diagrams. Okabe et al. [1992] give a detailed 
description of incremental, divide-and-conquer, and 
plane-sweep methods. 

Love et al. [1973] reformulated the continuous 
minimax (i.e., p-center) location problem as a 
constrained nonlinear programming problem and then 
used a penalty function method referred to as 
sequential unconstrained minimization technique 
(SUMT).  Elzinga et al. [1976] used a technique in 
nonlinear programming known as Lagrangian duality 
to produce a problem which is easier to solve 
numerically.  Drezner and Wesolowsky [1978] used an 
approach that involves the numerical integration of 
ordinary differential equations.  Charalambous [1981] 
transforms the problem into a sequence of 
unconstrained squared Euclidean minisum problems 
which have analytical solutions.  Brady et al. [1983] 
developed an interactive graphical program for 
addressing the minimax location of multiple facilities.  
The algorithms success depends on an individual’s 
ability to perform a pattern recognition task.  Because 
the minimax location problem is not everywhere 
differentiable subgradient algorithms [e.g., Chatelon et 
al., 1982; Demjanov 1968] have also been used.  The 
p-center problem in an area was addressed by Suzuki 
and Drezner [1996], who developed a location-
allocation type algorithm utilizing Voronoi polygons. 

Although there are similarities between the p-center 
problem and the sensor location problem discussed in 
this paper, there are significant differences.   The p-
center minimizes the maximum distance between 
facilities and demand points.  It is an allocation 
problem, and thus each demand point is assigned to 
and interacts with its closest facility.  On the other 
hand, the objective function in the sensor location 
problem involves the product of probabilities, making 
each event point interact with all sensors.  It is easy to 
see that an optimal set of facility locations for the p-
center problem will, in general, be a very poor solution 
to the sensor location problem. 

Whereas prior techniques for solving signal detection 
problems have relied on discretization, simulated 
annealing, and other search techniques, this paper 
attempts to exploit the geometry of the problem rather 
than consider the specific form of the objective 
function.  This is done by deriving local information 
from Voronoi polygons and adjusting sensor positions 
by a technique called toward the largest peak (TLP).  
The remainder of this paper is organized as follows:  
The succeeding section provides a mathematical 

formulation of the problem.  This is followed by a 
detailed description of the TLP algorithm, 
computational experience, and concluding remarks. 

 

2. SELP Model: Suppose that an event occurs at 

location 2( , )x y S= ∈ ⊂z �  and that the placement of 

m sensors (detectors) must be decided within region S.  
For convenience, an event occurring at location z will 
be referred to simply as event z.  The probability of 
detecting the event with the ith sensor (located at 

( , )i i ix y=x ) is ( )idπ  where 

2 2( , ) ( ) ( )i i i id d x x y y= = − + −z x  represents the 

Euclidean distance between sensor i and event z.  The 
poorest response for the SELP will occur where the 
probability of non-detection is largest.  Under the 
minimax criterion the largest probability of non-
detection for the region should be made as small as 
possible.  Let ( )1 2, , , m=X x x x…  denote the vector of 

all sensor locations.  Then if the m sensors operate 
independently of each other, the probability ( , )g z X  

that an event z is not detected for a fixed set X of 
sensors is the product that each sensor individually 
does not detect event z and is given by: 

( ) ( )( ) 

1

, 1 ,
m

i
i

g dπ=
=

 − ∏z X z x   (1) 

Consider that an event occurring at ( , )x y=z  is a 

random variable with ( )p i  being a given probability 

density function (pdf).  For any set A S⊆  

{ }Pr ( )
A

A p a da∈ = ∫z  where 

 ( ) 1
S

p a da =∫ , ( ) 0   for all  p a a S≥ ∈  (2) 

The maximum value of the probability of non-
detection ( , )g z X  is denoted by 

( ) ( )

( )( )

 

 

1

max ( ) ,

= max ( ) 1 ,
m

i i
i

p g

p d

ψ

π
=

=

   −  
  

∏
z

z

X z z X

z z x
.  (3) 

The event pdf acts like a weight which produces a 
balance between the point of maximum probability of 
non-detection and the ‘point’ where the event is most 
likely to occur.  In the case where the event is assumed 
to occur with equal probability anywhere in the region 



 

Proceedings of 2006 NSF DMII Grantees Conference, St. Louis, Missouri Grant #0400140 

S (i.e., the case of complete spatial randomness), p(z) 
becomes a constant and can be dropped from equation 
(3) without affecting the optimal solution.  By 
minimizing ψ , the poorest response is made as small 
as possible.  Therefore, the problem can be written as 

(SELP) 

( )

( )( ) 

1

1

1 2
, ,

, , 1

min , , , =

min max 1 ,

m

m

m

m

i i
i

d

ψ

π
=

   −  
  
∏

x x

x x z

x x x

z x

…

…

…

 (4) 

As mentioned earlier, (4) is a difficult nonlinear, 
nonconvex programming problem when 1m > .  A 
solution algorithm for (4) can be visualized as an 
iterative two-phase process.  For a fixed set of sensors 
locations, the value of ψ  is found (or approximated).  
In general, the calculation of the value of ψ  is 
nontrivial and is often approached through 
discretization of the set S.  The sensors are then moved 
and ψ  is recalculated.  As this process continues the 
goal is to decrease the value of ψ  until no 
improvement can be achieved by sensor relocation.  
This is the basic strategy adopted in the TLP approach, 
which is outlined in detail in the following section. 

 

3. Toward the Largest Peak (TLP): Given a single 

sensor located in a convex polygonal region 2S ⊂ � , 
the peaks (or points of maximum probability of non-
detection ψ ) occur at the vertices of S where the 
distance between the sensor and the event is a 
maximum.  Now consider the case of two sensors 
where the set S is a square with vertices (0,0), 

(10,0), (0,10), and (10,10).  Note from Figure 1(a) 

that the probability of non-detection is zero at the 
sensor locations with the peaks occurring along the 
boundary of the region S and the ridge running 
between the two sensors.  This ridge corresponds 
precisely to the boundary of the Voronoi polygon 
containing each sensor (see Figure 1(b)).  Thus, in this 
case, once the Voronoi polygons are determined the 
value of ψ  can be found by determining the 
probability of non-detection of each of the vertices of 
the Voronoi polygons.  This is more efficient that 
discretizing the entire set S, and is the basic strategy 
employed in the TLP algorithm to find an approximate 
value of ψ  in the general m-sensor case. 

Given m sensor locations, 1,..., m S∈x x , the algorithm 

determines the Voronoi polygons based on the points 

1,..., mx x  and the boundary of the convex polygon S.  

As mentioned earlier, there are a number of algorithms 
for efficiently finding the Voronoi diagram of a finite 

set of points in 
2
�  [see, for example, Preparata and 

Shamos, 1985 , Okabe et al., 1992].   [Okabe et al., 
1992] also demonstrate how to define a supplemental 
set of points to avoid infinite Voronoi polygons.  The 
intersection of the Voronoi diagram with the enclosing 
convex polygon S yields the desired Voronoi 
polygons.  In the implementation that follows, the TLP 
algorithm generates the vertices of each Voronoi 
polygon using an efficient simplex-type procedure that 
takes into account the Voronoi diagram and the 
enclosing polygon S. 

Once the probability of non-detection is determined 
for each Voronoi vertex, the sensor location within 
each Voronoi polygon is repositioned by moving it 
toward the largest local peak(s), thus reducing the 
peak (probability) and improving the overall objective 
value.  Moving an individual sensor may not improve 
the objective at all; in fact, it may actually make the 
objective worse.  Therefore, all sensors are moved 
simultaneously using local information derived from 
the individual Voronoi polygons.  After repeating this 
process until no further improvement is possible, the 
sensors are repositioned using global Voronoi 
information to fine tune the solution.  This second 
phase can result in a significant improvement in the 
final solution, however using only global information 
is generally inferior to using local information 
followed by global information.  A more precise 
mathematical statement of the algorithm follows. 



 

Proceedings of 2006 NSF DMII Grantees Conference, St. Louis, Missouri Grant #0400140 

 

 

 

(a) Probability of Non-detection 

x 1  =  ( 6 , 1 )

S

x 2  =  ( 4 , 9 )

( 0 , 0 )

( 1 0 , 1 0 )

 

(b) Voronoi Diagram 

Figure 1. Two Sensors when S is a Square. 

 

TLP Algorithm 

PHASE I – This phase uses local Voronoi information 
to reposition the sensors.  

Step 1.  Set the iteration counter 1k =  and choose an 

initial set of sensors location 1 ,...,k k
m S∈x x  

Step 2.  Find the Voronoi diagram corresponding to 

the discrete set of points 1 ,...,k k
mx x  and form a 

tessellation of the set S.   Let k
iV  represent the set of 

vertices of the Voronoi polygon corresponding to 

sensor location kix  (see Figure 2). 

Step 3.  Determine the probability of non-detection 

( )( )
1

( ) 1 ,
m

k
j j i j i

i

q q dπ
=

 = = −  ∏v v x  for each Voronoi 

vertex 
1

m
k

j i
i

V
=

∈v ∪  . 

Step 4.  For each sensor location kix , let 

max max
k

j i

k
i j

V
q q

∈
=

v
 and let max

k
iV =  

{ }max:k k
j i j iV q q∈ =v .  That is, max

k
iq  is the 

maximum probability associated with the vertices of 

the Voronoi polygon containing sensor location k
ix  

and max
k

iV  is the corresponding set of vertices.  The 

current maximum probability of non-detection is 

max max
1,..,

maxk k
i

i m
q q

=
= . 

Step 5.  Compute 
max

( )
k

j i

k
i j i

V∈
= −∑

v

h v x  and let 

1( ,..., )t t t
m=h h h .  Then /h h  is a unit direction 

vector that attempts to move each sensor location k
ix  

toward the largest local peak(s) in its Voronoi 
polygon. 

Step 6.  For each sensor location kix , compute 

( )1 /k k
i i i

+ = + ∆x x h h  for step length ∆ .   Find 1k
iV + , 

the set of vertices of the Voronoi polygon 

corresponding to each location 1k
i

+x .  Determine the 

probability of non-detection jq for each point 

1

1

m
k

j i
i

V +

=
∈v ∪  and the corresponding value of 1

max
kq + . 

Step 7.  If 1
max max
k kq q+ <  , then replace k  by 1k +  and 

go to Step 4.  Otherwise, replace ∆  by 0.75∆ .  If 
∆ < ε , then stop; otherwise, go to Step 6. 
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PHASE II – This phase uses global Voronoi 
information to reposition the sensor locations of Phase 
I.  

Step 8.  Given the set of sensors location 

1 ,...,k k
m S∈x x  determined in Phase I, set the iteration 

counter 1k = . 

Step 9.  Find the Voronoi diagram corresponding to 

the discrete set of points 1 ,...,k k
mx x  and form a 

tessellation of the set S.   Let k
iV  represent the set of 

vertices of the Voronoi polygon corresponding to 

sensor location kix . 

Step 10.  Determine the probability of non-detection 

( )( )
1

( ) 1 ,
m

k
j j i j i

i

q q dπ
=

 = = −  ∏v v x  for each Voronoi 

vertex 
1

m
k

j i
i

V
=

∈v ∪  . 

Step 11.  Let 

1

max max
m

k
j i

i

k
j

V

q q

=
∈

=
v ∪

 and let 

max max
1

:
m

k k k
j i j

i
V V q q

=

 = ∈ = 
 

v ∪ .  That is, max
kq  is the 

maximum probability associated with the vertices of 
all Voronoi polygons and max

kV  is the corresponding 

vertex set.  Let max
k

iV  be the subset of max
kV  consisting 

of the points that are closest to k
ix . 

Step 12.  Compute 
max

( )
k

j

k
i j i

V∈
= −∑

v

h v x  and let 

1( ,..., )t t t
m=h h h .  In this case,  /h h  is a unit 

direction vector that attempts to move sensor location 
k
ix  toward the closest global peak(s). 

Step 13.  For each sensor location kix , compute 

( )1 /k k
i i i

+ = + ∆x x h h  for step length ∆ .   Find 1k
iV + , 

the set of vertices of the Voronoi polygon 

corresponding to each location 1k
i

+x .  Determine the 

probability of non-detection jq for each point 

1

1

m
k

j i
i

V +

=
∈v ∪  along with 1

max
kq + , 1

max
kV + , and 1

max
k

iV + . 

Step 14.  If 1
max max
k kq q+ <  , then replace k  by 1k +  and 

go to Step 11.  Otherwise, replace ∆  by 0.75∆ .  If 
∆ < ε , then stop; otherwise, go to Step 13. 

 

 

x i
k

V i
k  =  { v 1 ,  v 2 ,  v 3 ,  v 4 ,  v 5 }

v 1
v 5

v 4

v 3

v 2S

 

Figure 2.  Voronoi Polygons for Four Sensors and 

Vertex Set 
k

iV  

 

Choosing a Set of Initial Solutions 

Since SELP is a nonconvex programming problem, it 
has many local optima, and the choice of initial 
solution plays an important role in final solution 
quality.  One option is to use many randomly 
generated initial solutions.  However, through 
empirical testing, it was determined that initial 
solutions generated by uniformly distributing sensors 
along the boundary of S typically generated high 
quality solutions.  Thus, this was the tactic used to 
initiate TLP.  Four types of starting solution sets were 
generated.  Let L represent the longest side of S and let 

( , )c c cx y=x  represent the mean of the vertices of S.  

In a Type 1 initial solution, the m sensors are 
uniformly distributed along the boundary of S  with 
the first sensor located on side L.  Five different such 
starting solutions are generated by varying the position 
of the first sensor on L.   The first sensor is located at 
five different positions uniformly positioned along 
side L.  Finally the sensors are moved from the 
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boundary toward the center point cx .  That is, if bx  

represents a boundary point, the corresponding sensor 
location will be 0.75 0.25b c+x x . 

A Type 2 starting solution is generated in basically the 
same way as Type 1 except that one of the sensors is 
located at cx  with the remaining 1m −  located along 

the boundary of S as in Type 1.  In this case the 
boundary locations are repositioned using 
0.80 0.20b c+x x .  Again, five such solutions are 

generated. 

A Type 3 starting solution is generated in the same 
way as Type 2 except two sensors are located along 
the longest diagonal of S with the remaining 

2m − distributed along the boundary.  If dx  and ex  

represent the endpoints of the longest diagonal, the 
two interior points are located at 0.60 0.40d e+x x  and 

0.40 0.60d e+x x .  Again, five solutions are generated, 

in this case the boundary solutions are repositioned 
using 0.85 0.15b c+x x . 

In a Type 4 solution, the sensors are divided into two 
groups when the number of sensors m is greater than 

1n +  where n is the number of vertices of S.  Since S 
has n vertices and vertices are critical points in the 
computational of the maximum probability, a set of n 
sensors are uniformly located along the boundary as in 
a Type 1 solution and repositioned using 
0.90 0.10b c+x x  .  The remaining m n−  sensors are 

also located along the boundary as Type 1 and 
repositioned using 0.50 0.50b c+x x .  Three different 

positions are used for each set of sensors and are then 
combined for a total of nine solutions.        

Thus, a total of (5 + 5 + 5 + 9) = 24 starting solutions 
were used. 

Figure 3 provides an example of each type of starting 
solution when there are nine sensors ( 9)m =  and S is 

a square ( 9)m = . 

T y p e  4

T y p e  2
T y p e  1

T y p e  3

 

Figure 3.  Examples of Starting Solutions 

 

Figure 4 provides a graphical depiction of an initial 
Type 1 solution and the first five iterations of the TLP 
algorithm for a 5-sensor problem on a square. 

Choosing a Step Length ∆ 

The choice of the step length ∆  in Step 6 of Phase I 
and Step 13 of Phase II also has a significant impact 
on the efficiency of the algorithm as well as the quality 
of the final solution.  If the initial ∆  is small, then 
many additional iterations may be necessary and the 
local optimum found will likely be near the initial 
solution.  Whereas if the initial ∆  is large, it may be 
possible to find a local optimum that is some distance 
away from the initial solution, but there may be an 
excessive number of unsuccessful steps where the 
objective does not improve.  Consider Phase 1.  Let 

1 ,...,k k
mx x  represent the current solution and for each 

k
ix , let { }max max:k k k

i j i j iV V q q= ∈ =v  as in Step 4.  

Let { }
max

min
1,...

min min ( ,
k

j i

k k
j i

i m V
d d

= ∈

 
=  

 v
v x .  That is min

kd  is 

the minimum distance between the sensor locations 
and their respective largest local peaks.  Then, to allow 
the algorithm the opportunity to find multiple local 
optima based on a single initial solution, two initial 

step sizes were used,  min
kd  and min9 kd .  Note, 

however, that in Step 6, the step length may be 
reduced by multiples of 0.75 until a successful step is 
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taken.  Let k∆  be the actual successful step length 
used at iteration k.  Then since the step lengths of 
successive iterations generally decrease during the 
course of the algorithm, two step lengths rules were 

used for iteration 1k + : { }1
minmin 6 ,k kd +∆  and 

{ }1
minmin 6 ,9k kd +∆ .  These parameter settings were 

chosen using empirical testing.  So, in essence, Phase I 
is solved twice, one with a small initial step length and 
once with a large initial step length.  Both of these are 
followed by Phase II, in which the step length rule 

{ }1
minmin 6 ,k kd +∆  was used. 

 

4. Computational Results: The TLP algorithm was 
coded in FORTRAN and compiled with Compaq 
Visual FORTRAN Professional Edition 6.6.B.  For 
comparison, the routine Fminimax in the Matlab 
Optimization Toolbox was also used to solve SELP.  
Fminimax is specifically designed to solve minimax-
type problems.  A coarse 50 50×  grid was used to 
discretize the set S and evaluate the maximum 
probability of non-detection.  This grid size was 
chosen to attain a reasonable resolution (0.2 based on a 
10 10× square) while also taking into account cpu 
time.  Ten randomly generated starting solutions were 
used for each run of Fminimax, which was compiled 
using Matlab Compiler version 7.0.   

Both programs were run under identical conditions on 
a PC with an Intel Pentium 4 2.4 Ghz CPU with 512 
MB of RAM.  For comparison, the probability of non-
detection for the final solution of each algorithm was 
determined by utilizing a 1000 1000×  grid.  Table 1, 
provides a summary of the results when S is a 
10 10× square and the dpf is gravity decay with  

23/( )  1 dd eπ −= − .  Considering all 29 problems, the 

average cpu time for TLP was 19.49 seconds whereas 
Fminimax required an average of 524.82 seconds.  
TLP attained a better final probability of non-detection 
in 17 of the 29 cases. 

Both algorithms were also used to find sets of sensors 
to monitor a polygon when the dpf was gravity decay 

defined by 
23/( )  1 dd eπ −= − .  The polygon was a 

six-sided polygon with vertex set {(0,0), (6,1), (10,4), 
(10,6), (6,9), (1,4)}, and Tables 2 summarizes the 
results.  Note that TLP yielded the better final solution 
in 17 of the 19 problems solved.  TLP required an 
average of 11.62 seconds of cpu time whereas 

Fminimax used an average of 222.63 seconds.  
Additional computational testing can be found in 
Cavalier, et al. [2005]. 

 

5. Conclusion: This paper presented a heuristic 
algorithm for determining the location of a finite 
number of identical sensors to detect an event in a 
given planar region.  The planar region was assumed 
to be a convex polygon and the objective is to 
minimize the maximum probability of non-detection.  
The problem is a difficult nonlinear nonconvex 
programming problem with a multitude of 
applications.  The heuristic algorithm utilizes Voronoi 
polygons to estimate the probability of non-detection 
and to determine a search direction.  Computational 
results demonstrated that the algorithm is relatively 
fast and generates high-quality solutions. 
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Figure 4: Graphical Depiction of TLP Algorithm 
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Table 1:  Results for gravity decay 
23/( )  1 dd eπ −= −  on a 10 10× square 

TLP Algorithm MATLAB Fminimax  
Number 

of 
Sensors 

Probability of 
Non-detection 

TLPP  

CPU 
Time 
(secs) 

Probability of 
Non-detection 

FminimaxP  

CPU 
Time 
(secs) 

 
Difference 

TLP FminimaxP P−  

 

(% Difference) 
100*( )

min( , )
TLP Fminimax

TLP Fminimax

P P

P P

−
 

2 0.865889 0.08 0.865890 29.48 −0.000001 0.00 
3 0.797697 0.16 0.796920 32.66 0.000777 0.00 
4 0.587497 0.29 0.587680 50.63 −0.000183 0.00 
5 0.516551 0.48 0.513140 83.73 0.003411 −0.42 
6 0.411270 1.16 0.409480 117.94 0.001790 −0.69 
7 0.343288 1.81 0.341040 163.68 0.002248 −0.08 
8 0.238105 2.30 0.238670 167.88 −0.000565 −0.03 
9 0.180115 3.41 0.179560 225.04 0.000555 −1.26 
10 0.148831 4.10 0.143860 207.65 0.004971 −2.23 
11 0.108221 5.47 0.108110 263.77 0.000111 −0.89 
12 0.082140 4.91 0.082084 300.63 0.000056 −0.87 
13 0.055696 7.84 0.056095 411.23 −0.000399 −0.44 
14 0.042850 8.46 0.041834 480.5 0.001016 −1.86 
15 0.032697 12.94 0.032117 426.99 0.000580 −2.96 
16 0.026663 10.10 0.023778 502.77 0.002885 −3.81 
17 0.019994 14.66 0.017808 541.54 0.002186 −3.70 
18 0.012355 14.87 0.012470 589.28 −0.000115 −2.08 
19 0.009224 20.64 0.009837 655.79 −0.000613 −4.27 
20 0.005885 17.13 0.006901 697.59 −0.001016 −3.66 
21 0.004487 29.68 0.005141 773.89 −0.000654 −4.28 
22 0.002952 29.14 0.003564 857.53 −0.000612 −1.49 
23 0.002262 31.68 0.002886 812.08 −0.000624 −3.94 
24 0.001773 30.69 0.002023 959.1 −0.000250 −6.26 
25 0.001124 43.44 0.001468 983.97 −0.000345 −4.29 
26 0.000754 43.65 0.001512 970.27 −0.000758 −3.75 
27 0.000604 54.45 0.001170 1091.89 −0.000566 −8.65 
28 0.000474 50.96 0.001047 907.42 −0.000573 −22.25 
29 0.000232 62.34 0.000801 933.48 −0.000569 −5.12 
30 0.000161 58.43 0.000681 981.38 −0.000520 −4.60 
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Table 2:  Results for gravity decay 
23/( )  1 dd eπ −= −  on a six-sided polygon 

TLP Algorithm MATLAB Fminimax  
Number 

of 
Sensors 

Probability of 
Non-detection 

TLPP  

CPU 
Time 
(secs) 

Probability of 
Non-detection 

FminimaxP  

CPU 
Time 
(secs) 

 
Difference 

TLP FminimaxP P−  

 

(% Difference) 
100*( )

min( , )
TLP Fminimax

TLP Fminimax

P P

P P

−
 

2 0.723580 0.16 0.728530 18.08 −0.004950 −0.68 
3 0.583972 0.30 0.586960 33.18 −0.002988 −0.51 
4 0.426887 0.52 0.426470 53.37 0.000417 0.10 
5 0.267728 0.99 0.275630 53.17 −0.007902 −2.95 
6 0.190962 1.22 0.190430 106.74 0.000532 0.28 
7 0.118905 1.72 0.129160 131.25 −0.010255 −8.62 
8 0.068871 3.75 0.074820 139.63 −0.005949 −8.64 
9 0.044392 5.15 0.048702 162.17 −0.004310 −9.71 
10 0.026441 6.96 0.029896 229.45 −0.003455 −13.07 
11 0.016524 8.69 0.018382 210.39 −0.001858 −11.24 
12 0.009666 9.95 0.010921 305.81 −0.001255 −12.98 
13 0.005254 12.68 0.006854 313.12 −0.001600 −30.46 
14 0.002665 13.22 0.004049 330.32 −0.001384 −51.95 
15 0.001550 17.20 0.002734 349.84 −0.001184 −76.43 
16 0.000878 19.90 0.001995 440.49 −0.001117 −127.11 
17 0.000519 22.99 0.001331 309.09 −0.000812 −156.30 
18 0.000252 26.78 0.000831 350.18 −0.000579 −229.68 
19 0.000151 31.83 0.000653 306.72 −0.000502 −331.31 
20 0.000087 36.84 0.000522 387.04 −0.000435 −500.28 
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